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Photoelectron angular distributions for states of any mixed character:
An experiment-friendly model for atomic, molecular, and cluster anions
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We present a model for laboratory-frame photoelectron angular distributions in direct photodetach-
ment from (in principle) any molecular orbital using linearly polarized light. A transparent math-
ematical approach is used to generalize the Cooper-Zare central-potential model to anionic states
of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the
Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type
functions, the model yields the previously obtained s-p mixing formula. The formalism is further
advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-
sections is assumed to follow the Wigner threshold law. The resulting model describes the energy
dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually with-
out requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we
apply the p-d variant of the model to the experimental results for NO~ photodetachment and show
that the observed anisotropy trend is described well using physically meaningful values of the model
parameters. Overall, the presented formalism delivers insight into the photodetachment process and
affords a new quantitative strategy for analyzing the photoelectron angular distributions and char-
acterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative

ions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896241]

. INTRODUCTION

Photoelectron imaging spectroscopy is a versatile tech-
nique for probing the electronic structure of atoms and
molecules. The corresponding spectra contain information
about the electronic, vibrational, and possibly even rotational
energy levels of the species studied.! The photoelectron an-
gular distributions (PADs), which can be measured in various
contexts,” reflect the geometric properties of the parent or-
bitals, closely related to differential photodetachment cross-
sections.’

In the particular case of one-photon laboratory-frame
measurements, the orientation averaging takes a toll on the
observables, but the relative ease of the experiments opens
a door for extensive investigations of a broad range of sys-
tems. As molecules increase in size, the PADs may become
less anisotropic, but this trend itself, if analyzed properly, can
shed light on the increasing structural complexity. With a par-
ticular focus on anion photodetachment, one broad objective
of this article is to help refute the perception that the informa-
tion content of one-photon laboratory-frame PADs automati-
cally and necessarily diminishes with increasing complexity
of the systems studied. We discuss, in conceptual and quan-
titative detail, how the general mixed (hybrid) character of
molecular orbitals is reflected in the corresponding PADs.
The experiment-friendly approach to modeling the PADs is
hoped to propel future applications of photoelectron imaging
to more routine characterizations of complex mixed-character
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orbitals. In a related realm, the analysis of PADs for known
systems, within the model framework presented here, will so-
lidify the conceptual and pedagogical connection of photode-
tachment physics with chemistry, as manifest in the molecular
bonding structures.

The laboratory-frame PADs in one-photon detachment
(or ionization) using linearly polarized light are given, in gen-
eral, by4

o’'(0) = (o/47)[1 + BP,(cos )], 1

where 6 is the angle between the photoelectron velocity vector
and the light’s electric field vector, P,(cos8) = (1/2)(3cos? @
— 1) is the second-order Legendre polynomial, o is the to-
tal (integrated) photodetachment cross-section, o’ = do/d2
is the differential cross-section with respect to the solid angle
Q (d2 = sin0d#), and B is the anisotropy parameter, ranging
from —1 to 2 for purely perpendicular and parallel transitions,
respectively.

In the case of atomic species, the initial state of the
electron can usually be described, within the orbital ap-
proximation, by a definite value of the orbital angular
momentum quantum number, /. Due to the angular momen-
tum conservation, the electrons emitted in a one-photon de-
tachment or ionization process are represented by super-
position of partial waves with quantum numbers [ + 1.
According to the derivations by Bethe,’ generalized by
Cooper and Zare,%’ the anisotropy parameter 8 for atomic
ionization or photodetachment is given by the following ex-
pression, commonly referred to as the Cooper-Zare central-
potential formula:
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In this equation, x, ., are the magnitudes of the radial tran-
sition dipole matrix elements for the (/ £ 1) partial waves
originating from the initial atomic orbital with the orbital an-
gular momentum quantum number / and §;,,,; ; is the corre-
sponding phase shift induced by interactions with the remain-
ing neutral or ion.

Equation (2) is generally not applicable to molecular
or cluster species, for which [ is not defined.®° In some
cases, however, when the molecular orbital (MO) resem-
bles an atomic-like function, an effective-/ description may
be adopted. For example, the 2pw,* highest-occupied MO
(HOMO) of O, is a d-like function, hence the photode-
tachment of O, can be modeled approximately using the
central-potential model with [ = 2.!%12 As another example,
photodetachment'* ' from CH™ effectively involves the non-
bonding 2p orbitals of the carbon atom and can be modeled
with the Cooper-Zare formula with / = 1.5 As most MOs
cannot be described by a single / value, many attempts have
been made to develop a general Cooper-Zare-like equation for
molecular species.'®?! One such development is the theory
for PADs of diatomic molecules by Buckingham et al.,?*:?!
discussed in Sec. II D of this work. Unfortunately, none of
the previous formulations can be viewed as both general and
straightforward.

As the direct precursor to the present work, our group has
recently developed an analogue of the Cooper-Zare formula
for photodetachment from mixed s-p orbitals.?”~>* Although
the approach used to derive the model is general (at least in
principle),?* the mixed s-p formula itself is not. Specifically,
it assumes that the initial state of the electron is a linear com-
bination of one s and one p type functions localized on the
same center:>>24

W) = /1= 7,l8) + /7). 3)

where Yp is the fractional p character, 0 < Yp = 1. [Originally,
f (for fractional) was used in Eq. (3) instead of y,.>**"* Here,
we change the notation to make it amendable to any general
mixing case, including those with f orbital contributions.] Any
relative phase factors for the s and p components in Eq. (3) are
absorbed into the corresponding kets. The key equation of the
mixed s-p model, expressed in the form analogous to Eq. (2),
is
2(1 - yp)Xg,l + Vp(2X12,2 —4X1,0X1,2 €08 52,0)

B, = . @
St A =y)x31 +7,(xPo +2x10)

Although it does not contain / explicitly, the ! values
for the s and p components of the initial orbital have been
assumed in the derivation of the model.?>?} Although the
Cooper-Zare formula was not used in the derivation, in the
limiting cases of a pure s (yp = 0) and pure p (yp =1) or-
bitals, Eq. (4) reduces exactly to the corresponding Cooper-
Zare predictions, i.e., Eq. (2) with / = 0 and [ = 1, re-

QL+ D[Ix} i+ A+ DX

2

spectively. With additional approximations,?® the mixed s-p
model has been shown to predict correctly the behavior of the
anisotropy parameter with respect to electron kinetic energy
(eKE) for several polyatomic anions, particularly those with
hybrid sp” orbitals.?>?” It also performs well for atomic and
atomic-like anions perturbed by cluster solvation.?®28

In general, any MO can be formally represented as a com-
bination of atomic-orbital functions centered at a chosen point
in space. This is the central idea of this work. The specific
objective is to generalize the Cooper-Zare central-potential
model,> as well as the mixed s-p model,”> to molecular or
cluster states of any mixed character. We develop a transpar-
ent mathematical approach, which allows one to construct an
analogous expression for the photodetachment from any MO.
We use the same assumptions as those underlying the Cooper-
Zare central-potential model, but do not use the Cooper-Zare
formula explicitly. Instead, we show that in the limiting cases
of atomic anions the Cooper-Zare formula naturally follows
from the present work. The present approach also differs from
the original derivation of the mixed s-p model by Grumbling
et al.:*>*3 while the original formulation considered only the
so-called principal molecular orientations, instead of com-
plete orientation averaging, no such approximation is used
here.

Section II presents the general model formalism and first
considers its application to s-p mixing, as a test case for com-
parison with the previous formulation.”>?* We confirm that
the previous approach yielded the same s-p mixing result,
which follows from the more general model described here.
We then follow through with an analogous derivation for the
p-d mixing case and subsequently introduce a general ex-
pression for photoelectron anisotropy for any mixed MO. In
Sec. III, we employ additional approximations and develop a
more practical adaptation of the model to describe the explicit
eKE dependence of the anisotropy parameter. Section IV con-
siders the photodetachment of NO™ as a benchmark case for
the p-d mixing variant of the theory.

Il. GENERALIZED MIXING MODEL

The differential cross-sections for one-photon detach-
ment can be calculated through the corresponding transition
dipole matrix elements ﬁfi, by integrating the magnitude-
squared of the scalar product of i i and light’s electric field
vector with respect to all molecular orientations.>?’ The cal-
culation of i f; requires the knowledge of the parent MO (or
its Dyson analogue®’) and the outgoing electron wave. Essen-
tially, one starts from an assumed initial state, defined in the
molecular frame, and projects it (with the dipole operator) on
the final state interrogated in the laboratory frame.

We approach the same process from the final-state per-
spective, starting with a formal expansion of the photoelectron
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wave in the complete symmetry-adapted laboratory-frame ba-
sis of spherical harmonics integrated over the azimuth an-
gle, ©;,,(0). The differential cross-section may then be rep-
resented as a sum over the angular-momentum components
of the free electrons:

00 !
Z Z ®€,m (9)
1=0 m=—I

2
o'(0) =

1 4

o0 o0
=NY 33 N €Cion @ (0)05 (),

=0 I'=0 m=—lm'==I'
Q)

where N is a normalization-dependent pre-factor. The energy
(or linear momentum) dependent C;,, coefficients in Eq. (5)
define the amplitudes of the partial waves and hence the par-
tial differential cross-sections, as observed in the laboratory
frame. To this point, the quadruple-sum in Eq. (5) is simi-
lar to Eq. (20) in Ref. 31, where Oana and Krylov calculated
the differential cross-sections by explicitly averaging the con-
tributions of all molecular orientations. Despite the revealing
similarity, Eq. (5) is in no way dependent on the details of ori-
entation averaging. It follows directly from the formal expan-
sion of the free-electron wavefunction (defined by the double
sum in the first part of the equation) in the complete laboratory
frame basis.® This expansion is mathematical in nature and
may be written for any photodetachment process — atomic or
molecular — without explicit reference to the parent orbitals or
orientation averaging. The C; , coefficients are defined in the
laboratory frame, where the final state of the detached elec-
tron is observed. The treatment of the orientation averaging,
along with the knowledge of the bound orbitals, is necessary
for the explicit evaluation of the coefficients, but not for the
formal statement of Eq. (5). In what follows, we show that
physical insight may be obtained using a simplified treatment
of this expansion.

As follows from Eq. (1), the complete ¢”’(6) function in
Eq. (5) is not required for the calculation of 8. It is sufficient
to know the relative cross-sections for just two angles, e.g., 6
=0and 6 = 7/2:

2 (0'(0) — o’'(1/2))

1 ’ : (6)
0'(0) +20'( /2)

This realization simplifies the following derivation, as many
of the spherical harmonics in Eq. (5) vanish at these angles.

A. Photodetachment from orbitals
with definite / values

In this subsection, we derive the expressions for the dif-
ferential cross-sections at & = 0 and /2 that will be used in
Sec. II B in conjunction with in Eq. (6) for anisotropy param-
eter calculations. First, we consider photodetachment from a
p orbital (I = 1, m = 0, 1), as the simplest case where the
PAD is dictated by nontrivial partial-wave interference. The
analogous derivations for s and d orbitals are presented in
Part A of the supplementary material,>> with only the key re-
sults summarized here, in the body of the article.
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According to the selection rules Al = £1, Am = 0
(linearly polarized light), the outgoing waves in p orbital
photodetachment are described by the harmonics ©,(0),
0,(0), and ©, ,(0). At 6 =0 and /2, ®, | = 0; hence,
the corresponding waves do not contribute to the ejection of
photoelectrons at 0° and 90°. Therefore, for these two angles
only, Eq. (5) takes the form:

o’ () = N(C5,095,0(0) +2C; 4Cy 0 €08 8 10 4(0)O, 4(6)

+C30034(0)). %)

assuming (for brevity and simplicity) that all C;,, coefficients
are real. Throughout this work, ¢/;, I =0, 1, 2, ... or s,
p, d, ..., denotes the differential cross-section for detach-
ment from an / orbital, accounting for the interference of the

(I = 1) partial waves. Substituting © () = ﬁ; and

@, 4(0) = ;{\/5(3 cos2 6 — 1) into Eq. (7), we obtain

N
o () = (C00+~/_C00C20cos320(3cos 61

+ZC§,O(3 cos’ 6 — 1)2) ) (8)

Although this equation is valid only for 8§ = 0 and
6 = /2, it is sufficient for our purpose. Substituting (sequen-
tially) & = 0 and 6 = 7/2 into Eq. (8) and using the results in
Eq. (6), we obtain the following expression for the anisotropy
parameter in p orbital photodetachment:

_ sl_fzcg,o + 32\_7§Co 0C2,0€08 6, 9
'Bp - &Cz + 15 C2 ' ©)

Even though only 8 = 0 and 7/2 were used to arrive at
this result, it defines the entire PAD (6 = 0 to m) through
Eq. (1). In general, the C;, coefficients in Eq. (5) — and there-
fore Eq. (9) — are related to the x;,,, matrix elements in
Eq. (2). For the purpose of this work, it is sufficient and eas-
iest to deduce this relationship indirectly, using the approach
described in Ref. 31. Specifically, we compare Eq. (9) to
the corresponding Cooper-Zare expression, i.e., Eq. (2) with
I=1:

B = 2X12,2 —4X1,0X1,2€0868, (10)
g X12,0 + 2X12,2

Since Egs. (9) and (10) describe the same physics, they must
be identical. We hence arrive at the proportionality C, o/Cy

=—2/v/5) x 1.2/ X 1,0» which we re-write, for convenience, as
a system of two equations with a common coefficient M, (the
subscript indicates / = 1 for a p orbital):

—2M ﬁxw
Cyo=4M '

Coo =
s (1n
1775 X1.2
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Substituting Eq. (11) into Eq. (8), we obtain the expressions
for the differential cross-section at § = 0 and 6 = 7/2 in the
detachment from a p orbital:

o', (0) = MEN (X0 +4xT —4X1,0X12C€088, )

, . (12)
o' (1/2) = M%N(Xf,o + X12,2 +2x; 0X1,2 08 52,0)

As a matter of verification, substituting Eq. (12) into Eq. (6)
yields Eq. (10), i.e., the Cooper-Zare expression for p orbital
photodetachment.

Analogous derivations can be repeated for any parent or-
bital with a definite / value. The specific cases of s and d or-
bitals are detailed in Part A of the supplementary material.*?
Here, we summarize the results that will be used in the subse-
quent discussion.

In the trivial case of detachment from an s orbital (I = 0,
m = 0), only the ©, , wave is emitted and the differential
cross-section magnitudes at & = 0 and @ = 7/2 are given by>?

o’ (0) = MiNx§,

13
o' (7/2)=0 (13)

The analysis becomes progressively more complex for
larger values of . For a d orbital (I = 2, m = 0, £1, £2),
there are eight outgoing waves, described by the harmonics
©10(0), O (), O34(0), O3 4,(0), and O 4,(0). Although
®3, 1,(0) vanish for 8 = 0 and 6 = 7/2 and, therefore, do not
contribute to photoemission in these directions, the remaining
harmonics still result in 21 terms that must be considered in
Eq. (5). The final result is*

{ a'y(0) = MzzN(4X22,1 + 9X22,3 — 12); 1 %o 5 cos8 53,1)

0/ 4(0/2) = M3N (3%3, 4 3%35 + 6Xa,1 X253 €08 83 ) .
(14)
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The differential cross-sections for higher-order atomic
orbitals are not considered explicitly in this work, but their
magnitudes for & = 0 and 8 = /2 can be derived (with some
patience) following the procedure detailed here.

B. Photodetachment from mixed-character states

The derivations in Sec. IT A were performed for atomic
orbitals. Upon substitution into Eq. (6), they yield the Cooper-
Zare formulae for the corresponding / values. We now
show that the differential cross-sections for § = 0 and 6
= m/2, expressed as explicit functions of the correspond-
ing radial dipole elements ., lead to a straightforward
method for constructing the formulae for the anisotropy pa-
rameter in the detachment from any mixed state. We be-
gin with a re-derivation of the mixed s-p model, obtained
previously using a different approach.®?2->* This will serve
as an initial test of the generalized mixing theory presented
below.

In calculations of cross-sections, one sums over the final
states, but averages over the degenerate initial states. For a
mixed s-p state described by Eq. (3), the differential cross-
sections can thus be shown to be the weighted average of
the contributions of the s and p components of the initial
state:

05p(0) = (1 = y,) 05(0) + v, 0,(0). as)

In this expression, interference between the p — s and p
— d channels is included in o, per Eq. (7), while the cross-
terms for the s — p and p — s, as well as s — p and
p — d channels are zeroed out by orientation averaging, as
discussed previously.”? Substituting Eqs. (13) and (12) into
Eq. (15) yields:

o' ,(0) = MEN( — Vp)X02,1 + MfNVp(Xlz,o +4xT 2 — 4X1.0X1.2 €088, )

(16)

o' (m/2) = M12N7’p (X12,0 + X12,2 + 21.0X1.2 €08 85.)-

Upon substitution of Eq. (16) into Eq. (6), we obtain

. 2M§N(1 - yp)Xg,l + 2M12N7’p(3X12,2 — 0X;,0X1 2 COS 52,0)

v MIN( = y,)x3, + MiNy,(3x%, + 6xi»)

While the N coefficient in Eq. (17) cancels out, M, and M, do
not. In general, M; depends on /, for the following reason. The
differential and total cross-sections, which are proportional to
M,?, include a sum over all final states and an average over the
(21 + 1) degenerate initial states. Thus, both ¢," and o, must
be proportional to the dipole elements squared, divided by (2/
+ 1).2! Hence, M;* o« (21 + 1)~!, which can be expressed
as M,2 = M?/(21 + 1), where M is a factor independent of /.
It follows then that M,*> = 3M,2. Using this proportionality
in Eq. (17) yields the familiar s-p mixing formula, Eq. (4).

A7)

Previously, Eq. (4) was obtained by analyzing the geomet-
ric properties of the relevant partial waves emitted from three
“principal orientations” of the anion.?? The agreement of the
new derivation with the previous result is an important vali-
dation point.

A similar procedure can be applied to a superposition of
p and d orbitals,

Vya) = V1= valp) + VV4ld). 18)
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where y , is the fractional d character. Using the p-d analogue
of Eq. (15) and referring to Egs. (6), (12), (14), and M12 =

1 - Vd)(2X12,2 —4X1,0X1,2 €08 52,0) + Vd(2X22.1 + 12X22,3 — 36)5,1X2,3 €08 53,1)/5
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M?/(2] + 1), we obtain the anisotropy parameter for mixed
p-d state photodetachment:

ﬁpd =

In the limiting cases of y; = 0 and y,;, = 1, Eq. (19) re-
duces exactly to the Cooper-Zare predictions for the detach-
ment from pure p and pure d states, i.e., Eq. (2) with/ =1 and
| = 2, respectively. This property of Eq. (19) is similar to that
of Eq. (4) for s-p mixing.

The above approach allows us to construct analogous
expressions for the detachment from any mixed orbital, and
therefore, at least in principle, from anything or everything. It
can be easily generalized for any number of different / compo-
nents, not necessarily just one [as in the Cooper-Zare formula,
Eq. (2)] or two (as in the s-p and p-d mixing cases discussed
above).

Since atomic orbitals localized on a single center form a
complete basis set, any MO can be expanded as their linear
combination.’ We assume

ASEDSNALE (20)
!

(=7 )(XTo +2X72) +va(2X3, +3%35)

19)

where |I) are suitable linear combinations of orbitals of a given
type (defined [ value and m = —I...1), adapted to the system
at hand. The phase factors are absorbed into the kets, while
y, are the fractional [ characters (I = s, p, d, etc.) that sat-
isfy the normalization requirement )y, = 1. Equation (20)

is expressed in this particular form, blecause the projection of
angular momentum on a given axis (described by the quantum
number m) is not conserved upon the molecular-to-laboratory
frame transformation for a randomly oriented ensemble, but
the angular momentum magnitude (described by /) is con-
served. Hence, for modeling the laboratory-frame PADs the
[ composition of the parent MO, not its m distribution, is im-
portant. Generalizing the approach used to obtain the s-p and
p-d mixing formulae [Eqgs. (4) and (19)], the anisotropy pa-
rameter for the detachment from the mixed orbital defined by
Eq. (20) is given by

; VI — Dx?_y 4+ A+ DA+ DX — 610+ DXy X1 €088,y 1]/ QL+ 1)

In general, the expansion in Eq. (20) may contain an infi-
nite number of terms. Its convergence, and hence the number
of mixing terms needed under the sums in Eq. (21), depend
on the basis set. For practical applications, the basis can be
(should be) chosen carefully, to limit the number of terms,
while maximizing physical insight over computational rigor.
Many striking applications can be demonstrated with just two
basis functions, giving rise to the special “binary” mixing
cases. The mixed s-p model?>* is the very first such exam-
ple, the next being the p-d mixing case, whose application is
discussed in Sec. I'V.

C. Simple empirical rule for MOs of any
mixed character

Equation (21) allows us to formulate a simple empirical
rule for writing the Cooper-Zare-like equation for any specific
mixing case.

21: vlIxto + A+ Dxtpy ]

ey

First, it is convenient to express the Cooper-Zare
formula,%7 Eq. (2), as a ratio:

B; = v /wy, 22)
where
- LA=1) % D AA2) X 1y =LA X gy X 11 €OS 81y 1y
11— s
20+1

wy = Ixo + + DX
(23)
We shall refer to v; and w; as the Cooper-Zare numera-
tor and denominator, respectively, despite the fact that the (2/
+ 1) divider in v, is usually written in the denominator of the
Cooper-Zare formula.” The denominator w, is related to the
photodetachment cross-section o, via o; o (21 + 1)~ w,, 22!
with the (21 + 1)~! factor accounting for the averaging over
the degenerate states with quantum number /. It is for this rea-
son that in Sichel’s work?! the Cooper-Zare formula is writ-
ten with (2/ 4+ 1)~! in the denominator, offset by (2/ + 1)~2
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in the numerator, in contrast to the more common format of

Eq. (2),%7 which has a (2] 4 1) factor in the denominator only.
Using Eq. (23), the s-p mixing formula, Eq. (4), may be

written compactly as

(I =y,)vy + v,y

(I =y wy +y,w, .

B,y = (24)

The p-d mixing formula, Eq. (19), can be expressed in a sim-

ilar form:

_ A= y)v + 70
(I =y )w, +y,w,

Bra (25)

Comparing the general mixing formula, Eq. (21), to the defi-
nitions in Eq. (23), the former may be written simply as

21:7/1”1
B leyzwz.

B (26)

Hence, Eq. (21) is but a ratio of the Cooper-Zare numer-
ators and denominators, individually averaged over all / com-
ponents of the parent MO with the respective fractional char-
acters ;. When “mixing” the respective Cooper-Zare numer-
ators and denominators in such an empirical way, the (2/ + 1)
degeneracy factor (commonly appearing in the denominator
of the Cooper-Zare formula)®” must be treated as part of the
numerator, per Eq. (23).

For example, the Cooper-Zare formulae for pure s and
p orbitals are given by Eq. (S.2) in the supplementary
material’> and Eq. (10) above, respectively. Mixing (av-
eraging) the respective numerators, v, =2 x& , and v, =

(=¥ )(2x3 1 +12x33 = 3621 X2.3€0583 1) /54 v (6X35 + 20%3 4 — 72X32X3.4 €088, ,) /7
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(2)(12’2 — 4X1.0X1.2 €08 8, ), and denominators, w, = x4, and
w, = (X12,0 + 2xﬁ2), using (1 — y,) and y, for the s and p
fractional characters, yields the s-p mixing equation, Eq. (4).
We have thus obtained the s-p mixing result in an empiri-
cal fashion, without going through the intermediate derivation
steps described earlier in this section or in Ref. 23.

Turning to p-d mixing, the Cooper-Zare formula for de-
tachment from a p orbital is given by Eq. (10), with the numer-
ator v, and denominator w, appearing in the preceding para-
graph. The analogous expression for a d orbital is obtained by
substituting [ = 2 into Eq. (2):

(2)(22’1 + 12)(22’3 — 36)(2’1)(2’3 cos 83,1)/5

,3 =
¢ 2)(22,1 + 3X22,2

. @D

e, vy, =Q2x3, +12x3; — 36X X23€0885,)/5 and w,
= 2)(22.1 + 3)(2272. Using (1 — y,) and y, for the p and d char-
acters, respectively, yields the p-d mixing equation, Eq. (19),
also skipping all the intermediate steps described in Sec. II B
and in Part A of the supplementary material.*”

As another illustration of the empirical approach, we
shall write the anisotropy equation for detachment from a
mixed d-f state with a fractional f character y,, avoiding the
exceedingly tedious derivation altogether. Since the Cooper-
Zare formula for a d orbital is given by Eq. (27), while that
for an f orbital [substituting / = 3 into Eq. (2)] is

. = (6X32 4+ 20x34 — 72X32X3,4 €08 845) /7 28)
! 3x32 +4X34 ’

the above procedure yields the formal d-f mixing result in one
simple step:

:3(]f =

Analogous equations can be similarly formulated for any
other mixing scenario, including cases of more than two types
of functions contributing to the MO expansion in Eq. (20).

D. Comparison to Buckingham et al.’s theory
for diatomics

Before continuing with the practical adaptation of
the generalized mixing theory, we discuss the results

(I =y (x5, +3x35) + v, (3x52 +4x3.4)

(29)

obtained so far in the context of Buckingham et al’s
theory for PADs of diatomic molecules.’®?' The bulk of
their work accounts for rotational structure within different
angular-momentum coupling cases. They showed, however,
[Eq. (30) in Ref. 20] that in the absence of rotational
resolution (averaging over the rotational levels), the pho-
toelectron anisotropy parameter for a linear molecule is
given by (adapting the notation to that used in the present
work)

o0
> e P+ DA — DxAoy + @+ DA+ 2x7, — 610+ DXy X41 €08 841 -]

I=|AA|

B = >

, (30)

Z |Cn1|2(21 + 1)_1[1)(12,1_1 + (I + I)Xl%l+l]

I=|AA|
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where c,; are the parent MO expansion coefficients with re-
spect to the central-potential basis and AA is the change in
the projection of the electronic orbital angular momentum on
the internuclear axis due to the photoionization or photode-
tachment transition. Within the MO approximation, AA cor-
responds to the projection of angular momentum of the parent
orbital (1). For a single [ value, Eq. (30) reduces to the corre-
sponding Cooper-Zare formula, Eq. (2).

There is revealing similarity between the general mix-
ing equation, Eq. (21), and Buckingham et al.’s** rotation-
averaged result for diatomic molecules, Eq. (30). To empha-
size this point, Eq. (30) may be rewritten in the following
form, using the definitions of Eq. (23):

o0

e, PRL+ DTy,
I=[AA

B=" : 31)

> ey lP@L+ D)y,
I=|AA|

This equation is similar to the general mixing for-
mula obtained here, in the form of Eq. (26), with two
distinctions.

First, the weight factors under the sums are different, but
easily reconciled. The |c,|* coefficients in Eq. (30) or (31)
represent the weights of different / components of the initial
MO. In Eq. (21) or, equivalently, Eq. (26) these weights are
expressed in the equivalent form of fractional / character, y,.
Further, the (2] + 1) dividers in Eq. (31) account for the av-
eraging over the m; components of the degenerate states with
defined I values.?’ Similar factors do not appear in Eq. (26),
because of how the initial state is defined in our derivation, per
Eq. (20). For example, in the s-p mixing variant of the model,
the initial state is defined as a superposition of one s- and one
p-type function, while other m components of the p state do
not contribute to the detachment MO. All necessary averag-
ing is hence accounted for by y, in Eq. (3) or, generally, y, in
Eq. (20).

The second distinction between Eqgs. (26) and (31) is
the respective summation ranges. In Eq. (26), we sum (av-
erage) over all / components of the initial MO included in
the consideration. In Eq. (31), the sum starts, effectively, at
I = |A|, where A is the projection of [ of the parent MO on
the linear molecule’s axis. Hence, this distinction reflects the
different scopes of applicability of the two models (poly-
atomics vs. linear molecules), while the conceptual foun-
dation behind the basis-set expansions is the same in both
cases.

Overall, the approach taken in the present work is
distinct from that used by Buckingham er al?*?! In
Secs. I A-II C, the averaging over the rotational structure
is included implicitly, rather than explicitly. The disregard
of rotational structure leads to the loss of the correspond-
ing observables but has also resulted in tremendous simpli-
fications in the formalism, allowing it to be extended to any
polyatomic system. Yet, in the partial case of diatomics the
final result coincides with Buckingham et al.’s?® rotation-
averaged formula, giving an important validation to our
theory.

J. Chem. Phys. 141, 124312 (2014)

lll. THE HANSTORP APPROXIMATION

A. Application to the central-potential and
s-p mixing models

The direct application of the Cooper-Zare model,®” the
generalized mixing theory (Secs. II A-II C), or the the-
ory of Buckingham et al.>*?! (Sec. II(D)) requires the eval-
uation of the energy-dependent transition matrix elements,
X1+ 1- That being a nontrivial undertaking in its own right,'
the PADs for relatively simple species, in conjunction with
the Cooper-Zare model, are sometimes used to deduce these
quantities from experimental data.

For applications relevant to chemistry, it is often desirable
to decouple the matrix elements problem from the underly-
ing properties of the MOs themselves. This objective can be
achieved via an alternative approach, applicable only to anion
photodetachment, which is based on the approximation origi-
nally proposed by Hanstorp and co-workers.?® They assumed
that the relative scaling of the partial-wave cross-sections and,
therefore, the transition dipole matrix elements follows the
Wigner law.*? The Cooper-Zare formula, Eq. (2), can be rear-
ranged to show that 8, is dependent not on the matrix elements
themselves but the x, ; , ;/x;;_ | ratio. Assuming the ratio of
the (I + 1) and (I — 1) partial wave cross-sections to be pro-
portional to &, where ¢ = eKE, and, therefore, x, ;, /X, _ |
= A;e, where A, is a proportionality coefficient, Eq. (2) can be
rearranged to allow the calculation of 8, as an explicit func-
tion of eKE:?°

,31(8)

IA—1) + (I + 1)U +2)A26% — 61 + 1) Ag cos 8,4,
- QL+ D[1 + ( + 1DA?e?] '

(32)

In a similar vein, all applications of the s-p mixing model
published to date®'%23-2>27 have used the Hanstorp-like®®
form of Eq. (4), namely?*2*

2(1 —y,)Bie +v,(2A7e* — 4A e cos 8, )
(1 —y,)B e+ v,(1 +2A%¢?)

Equation (33) gives the explicit eKE dependence of the
anisotropy parameter in a manner analogous to Eq. (32) for
defined-/ states. The A, coefficient in Eq. (33) describes the
relative scaling of the p — d and p — s detachment chan-
nels; it is but a specific (I = 1) case of A, used in Eq. (32),
which describes the same for the / — [/ £ 1 channels origi-
nating from the initial / orbital. The B, coefficient in Eq. (33)
was first introduced (originally as simply B) in the s-p mixing
model;?*2* it describes, in a similar?® Wigner-like33 fashion,
the “crossed” s — p and p — s channel ratio. Specifically,

Byp(e) = . (33)

2 2
Xip 22 Xoa
— = A e”, —_—
2 1 2
X1,0 X1,0

= Bje. (34)

B. Application to new cases

A similar approach can be applied to any of the new mix-
ing cases discussed in Sec. II. First, the definitions of A; and



124312-8 Khuseynov et al.

B, in Eq. (34) must be generalized to any values of [ > 1:

2 2

Xi1+1 Xi—11
2 2

Xii-1 Xii-1

Since these definitions follow the original approximation of
Hanstorp et al.,’® we shall refer to A, and B, as the Hanstorp
coefficients. Using these definitions, it is convenient to rede-
fine the Cooper-Zare numerator and denominator expressions
in Eq. (23) in the following forms:

= A7e?, = Be. (35)

v = X12,171V1’ 36
I (36)
Wy = X1
where
B l(l—1)+(l+1)(l+2)A,2 2—6l(l+1)Ala coS 8 1,y
= 2041 (37’)

W, =141+ )Afe?,

are the respective numerator and denominator of Eq. (32),%
defined in a manner consistent with the definitions of v; and
w, in Eq. (23).

We now consider a particularly important class of mixing
cases, applicable to any sequential binary mixing of the (I —
1) and / components of the initial state (e.g., s-p, p-d, etc.), so

a- yd)st(2A% 2 —4A,¢ecos 82’0) + y,Ale? (2 + 12436 — 36A,¢ cos 83’1)/5

J. Chem. Phys. 141, 124312 (2014)

that y, | 4+ y, = 1. Substituting the definitions in Eqs. (36)
and (37), into the general mixing formula, as given by
Eq. (26), the anisotropy parameter for photodetachment from
an (I — 1, ]) mixed state is expressed as

(I- V[)Ul_l + vy

,B_ =
U = pw + v,
_ 1 - yl)xlz—l,l—zvl—l + V1X12,1—1Vz (38)
=YX gaWi + Xt W
B i(e) = (1 —y)BieV,_, +vAl &%V,

(1= y)BieW,_| + v, Al &2W,

Equation (38) gives an explicit eKE-dependence of the
anisotropy parameter for any sequential binary mixing case
(I —1,D.Forl =1, Eq. (38) reduces to the familiar s-p mix-
ing formula, Eq. (33).2%?* Although the A, coefficient is not
defined, it formally cancels out upon the substitution of Eq.
(37) into Eq. (38) with [ = 1.

The next sequential binary case corresponds to the de-
tachment from a mixed p-d state. It is described by Eq. (38)
with I = 2, which gives

,de(g) =

An example application of the p-d mixing formalism in
the form of Eq. (39) is demonstrated in Sec. IV.

C. Examples of binary mixing curves

As discussed previously,®?* the s-p mixing equation with
the Hanstorp coefficients, Eq. (33), can be rearranged as
follows:

2Z,(Ae) + 2(A €)* — 4(A &) cos b,
Z(Ae)+ 1+ 2(A )

where Z, is a specific (I = 1) case of the composite mixing
parameter Z,, defined as

B,p(e) = . (40)

_1-vB

Z 1
Y l

(41)

Neglecting 4, , and staying aware of other model constraints,
Z, can be said to reflect both the physics and chemistry of a
mixed s-p photodetachment process, by combining the rela-
tive channel cross-sections (via A; and B,) with the character

(1 — y)Bye(1 4+ 2A2e2) + y,A2¢2(2 + 3A3¢2)

_ Z,[2(Ase) — 4(A,/A})cos b, o] +[2 4 12(Ay)° — 36(A,e) 08 85 11/5

(39)

of the parent MO (via y, = yp).24 Furthermore, Eq. (40) re-
veals that for a given value of Z,, B, is a unique function of
A, e. Hence, if the energy scale is normalized with regard of
the “size” of the initial orbital (as determined by Al),3’26 the
anisotropy trend is completely determined by Z,. This is il-
lustrated in Figure 1, where the anisotropy parameter, per Eq.
(40), is plotted versus A, ¢ for different values of Z,, ranging
from Z, = 0 (pure p orbital limit) to Z;, = oo (pure s limit).

Figure 1 is a complete summary of the mixed s-p
model.»?? It shows that the mixed s-p anisotropy trends ex-
hibit a broad variation from the pure s limit to the qualita-
tively different pure p limit, depending on the character of the
detachment orbital. In particular, even small deviations from
the pure s limit (e.g., a solvation-induced polarization of an s
orbital)> are predicted to have a large effect on the photode-
tachment anisotropy. It is for this reason that PADs can be
used as a sensitive probe of s-p hybridization.**

The p-d mixing case is notably different. Using the com-
posite p-d mixing parameter Z,, defined by Eq. (41), Eq. (39)
can be re-written in a form analogous to Eq. (40):

.de(g) =

Z,(A,e) [(A,/A)? + 2(Ae)] + [2 + 3(Ae)2]

(42)
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Z;=®
2
pure s state
9.0
15 4.0

pure p state

FIG. 1. The electron kinetic energy dependence of the anisotropy parameter
for photodetachment from mixed s-p states, as given by Eq. (40), for different
values of Z, [defined by Eq. (41)]. All mixing curves shown assume no phase
shift (8 , , = 0). The horizontal axis (A, ¢) corresponds to eKE (¢) normalized
for the “size” of the p component of the initial state, as expressed by the
Hanstorp coefficient A,. For example, if A| = 1 eV~ the axis corresponds
to eKE in units of eV. The blue curve corresponds to Z; = 1. The green
and red curves correspond to the respective pure s (Z; = 00) and pure p (Z,
= 0) limiting cases of the mixed s-p model and coincide exactly with the
predictions of the Cooper-Zare central-potential model [Eq. (32)] for [ = 0
and [ = 1.

In contrast to s-p mixing, this equation cannot be summarized
in a single graph of B, vs. A,¢ for different Z, values, be-
cause of the additional Hanstorp coefficient, A, present in
the formula. To illustrate the anisotropy trends, in Figure 2
several B, curves for varying Z, values are plotted vs. A,¢,
all assuming (arbitrarily) A; = 2A,. While the appearance of
the graph will change with A,, the key point remains clear,
as illuminated by the limited representation of Eq. (42) in
Figure 2: at moderate eKEs, the variation among the differ-
ent p-d mixing curves is less striking than in the case of s-p
mixing (Figure 1). This is not surprising, considering that the

1.0
0.5 4
pure d state pure p state |
[ 0.0 10
5
-0.51 I
0.3
0
-1.0 T T : : T

0.0 0.2 0.4 0.6 0.8 1.0 12

A&

FIG. 2. Energy dependence of the anisotropy parameter for photodetachment
from mixed p-d states, as given by Eq. (42) for different values of Z, between
0 (pure d state, red curve) and co (pure p state, green curve) assuming no
phase shifts (3, ) = §; | =0) and A} = 2A,. See the text and Figure 1 caption
for details. The blue curve corresponds to Z, = 1.
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limiting pure p and pure d curves exhibit qualitatively sim-
ilar behaviors, both showing a 8 = —1 minimum. There is,
however, one important distinction between the pure p and
pure d cases, on the one hand, and the mixed p-d case, on the
other. A more-shallow (8 > —1) minimum of the pure p or
pure d Cooper-Zare curves can result only from a non-zero
phase-shift between the partial waves. To the contrary, the p-
d mixing curves predict more shallow, in general, minima (8
> —1) even with zero phase-shifts. This is illustrated by the
intermediate-Z, (e.g., Z, = 1) curves in Figure 2.

IV. BENCHMARK APPLICATION TO NO-
PHOTODETACHMENT

The photodetachment of NO~, whose HOMO is a 2pm*
orbital shared between the nitrogen and the oxygen atoms,
is a benchmark test for the p-d mixing case described in
Sec. III B. As illustrated in Figure 3, the HOMO (a, left) can
be described approximately as a linear combination of a single
3d and a single 2p type functions, centered halfway between
N and O (b).

This description amounts to representing the HOMO in
terms of only two basis functions, which may be insufficient
for some applications. However, if the functions are chosen
with care, the residual contributions of other (larger /) com-
ponents will be small.*> Since the fractional characters figure
as weight factors in Egs. (21) and (26), minor contributions to
Eq. (20) can be neglected, provided the lowest [ free-electron
channels are accounted for.”? In principle, the model formal-
ism developed in this work, particularly the general mixing
formula, Eq. (21), allows for the inclusion of any number of
terms in the MO expansion. The two-function approach may
be especially useful, if the objective is to capture the essence

(a)

NO- HOMO p-d model function
(b) “
|d > | p>

FIG. 3. (a) (Left) NO~™ HOMO from CCSD/aug-cc-pVTZ calculations.
(Right) the p-d model function obtained as a least-squares fit of the linear
combination [Eq. (18)] of a single 3d and a single 2p hydrogenic functions,
centered halfway between N and O. The optimized fit parameters are: y ,
=0.985, Lo = 1.63, and ¢ 3, = 5.20. (b) The individual d and p components
of the model function shown on the right in (a). All plots correspond to an
isosurface value of 0.02.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

eKE / eV

FIG. 4. The NO(X *TI, V') < NO~ (X X, v/ = 0) photoelectron spectrum
obtained at 612 nm. The comb above the spectrum indicates the peak assign-
ments to the vibrational states of neutral NO. The inset on the right shows
the corresponding photoelectron image. The double-sided vertical arrow in-
dicates the laser polarization direction.

of the photodetachment process and relate the observables to
the dominant character(s) of the parent MO.

The photodetachment of nitric oxide anion has been the
subject of many experimental and theoretical studies,?¢33
including several by our group.’*3**! The B values were
recorded for the NO(X *TI, v = 0 — 6) < NO~ (X 3=, v"
= 0) band at several wavelengths ranging between 1064 and
266 nm. Attempts have been made to fit the experimental B(¢)
dependence using the central-potential model, Eq. (32), with
an effective [ = 2. Similar to 02’,12’42 the optimal values
of the fit parameters (A, and J5 ) depend on the vibrational
state of neutral NO.3° Here, we consider only the data corre-
sponding, as closely as possible, to vertical photodetachment,
as such transitions are most appropriate for comparisons with
the model that does not include vibronic effects.

The vibrational state of NO that has the largest Franck-
Condon overlap with the ground state of the anion is v/ = 2.3
This is clearly borne out in the photoelectron imaging data,
such as, for example, the 612 nm results for NO~™ shown
in Figure 4. Both the photoelectron image and the spectrum
exhibit a vibrational progression, with v/ = 2 correspond-
ing to the most intense peak. In Figure 5, the experimental
B values for the v/ = 2 transitions, obtained in several inde-
pendent measurements at various wavelengths (from 1064 to
266 nm),zz’34 are plotted versus eKE.

Shown as a dashed curve in Figure 5 is the least-squares
fit to these data using the Hanstorp formulation of the Cooper-
Zare model, Eq. (32), with an effective /| =2, A, = 0.36 eVl
and cos d; | = 0.88. Although the fit reproduces the observed
anisotropy trend quite well, the agreement is not satisfying,
because it is based on an unphysical assumption. The NO™
HOMO [Figure 3(a), left] does not have the same symmetry
properties as a d orbital. The significant phase shift, necessary
to reproduce the observed B(¢) trend, points to the flaws inher-
ent in the central potential description. In general, the interac-
tion of the departing electron with the remaining neutral in
anion photodetachment is much weaker than the Coulomb at-
traction in neutral-molecule ionization and the resulting phase
shifts tend to be small. Additionally, both the / = 1 and

e e e e S e L e e e i |

0.0 1.0 2.0 3.0 4.0 5.0
eKE / eV

FIG. 5. (Symbols) Experimental energy dependence of the photoelectron
anisotropy parameter for the NO(X 21, v/ = 2) < NO~ (X 3 ~, v/ = 0)
photodetachment transition at several wavelengths ranging between 1064 nm
(the leftmost data point) and 266 nm (the rightmost point). Dashed curve:
The least-squares fit to these data using the Cooper-Zare central-potential
model [Eq. (32)] with an effective / = 2. The optimal fit parameters are: A,
= 0.36 eV~! and cos 83, = 0.88. Solid curve: The p-d mixing model pre-
diction using Eq. (39) with cos 8, , = cos 8, | = 1, y ;, = 0.985 (determined
from the analysis of the NO~ HOMO), AL A, and B, calculated from {2])
and ¢, via Eq. (43), while {Zp and ¢, are used as adjustable parameters
to fit the curve to the experimental data (optimal values: {op = 1.46 and
$30=35.94).

I = 3 waves turn to zero at the origin (r = 0), specifi-
cally as a consequence of Eq. (S.18) in the supplementary
material.>> This property decreases the effect of the (weak)
core interactions on the individual phases of these waves. The
above phase shift, necessary to reproduce the experimental
B(e) dependence using Eq. (32), is inconsistent with these
expectations.

The analysis can be improved by describing the lopsided
2pm* HOMO of NO™ as a polarized d orbital, which is done
by adding some p character, as illustrated in Figure 3. Hence,
we constructed a model p-d function, per Eq. (18), as a super-
position of one 2p and one 3d hydrogenic functions centered
in the middle of the N-O bond. The spatial extents of these
functions are controlled, per Eq. (S.20) in Part B of the supple-
mentary material,>> by the respective charge parameters, $op
and ¢,,. In the present case, these charges do not correspond
to any physical atom in NO™~. For this reason, in contrast to
our work on carbon-centered s-p hybrid orbitals,?*227 ¢
and ¢ 5, cannot be assumed to be equal a priori.

Overall, the mixed p-d model function is defined by three
parameters: ¢,,, {3, and the fractional d character y,. In
order to optimize the model function’s d character, we car-
ried out a least-squares fit (in three spatial dimensions) of
the p-d model function to the NO~™ HOMO determined from
CCSD/aug-cc-pVTZ calulations*® [Figure 3(a), left]. The pro-
cedure yielded y, = 0.985, with ¢,, = 1.63 and ¢, = 5.20.
The y, value corresponds to only a 1.5% (probability based)
p character, which translates into a non-trivial 0.12 coefficient
for the p component in Eq. (18), as \/1 — y; = 0.12. The re-
sulting model orbital is shown in Figure 3(a), right; it is very
similar to the ab initio HOMO shown on the left.

The p-d mixing formula, Eq. (39), can now be used to
model the observed anisotropy trend. The Hanstorp coeffi-
cients depend sensitively on the details of the parent orbital

2p
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and more work is needed to derive their values in a pure
ab initio fashion.?* One feature is clear; however, the Ay,
A,, and B, coefficients in Eq. (39) are not entirely indepen-
dent. Among the three of them, they contain only two degrees
of freedom, analogous to the s-p mixing case, where the A,
and B, coefficients in Eq. (33) are generally related to each
other.?* If the p and d components of the model orbital are
described by respective 2p and 3d hydrogenic functions with
effective charges ¢,, and ¢, (as above), the coefficients can
be calculated (in atomic units) as

16 144

2°¢3,
= —, 2 = —, _—
§2p 5§3d

= . 43
2 5 . 36§22p ( )

Ay

The derivation of these equations is given in Part B of the
supplementary material.>?

Given the above d character (y ; = 0.985), the anisotropy
trend per Eq. (39) is determined by only two independent pa-
rameters, {,, and {5, We neglect the expected-to-be-small
phase shifts (by setting cosd,, = cosd;; = 1) and fit Eq.
(39) to the experimental data in Figure 5. The fit yields the
B(e) dependence plotted in the same figure as a solid curve,
with the fit parameter values ¢,, = 1.46 and {3, = 5.94. These
charges are only slightly different from the respective values
obtained above by fitting the p-d model orbital to the ab initio
HOMO (¢,, = 1.63 and ¢, = 5.20). The discrepancy is not
surprising, given the assumption of the hydrogenic functions
to describe the d and p components of the orbital.

Thus, the p-d mixing model prediction reproduces the ex-
perimentally observed anisotropy trend quite well. Although
the fit is not necessarily “better” (in a mathematical sense)
than the single / value Cooper-Zare prediction, it is more
meaningful, since the underlying model is a more valid rep-
resentation of the actual physics of the photodetachment
process.

V. SUMMARY

A generalized mixing model for molecular-anion PADs
has been developed in a form that is, on the one hand,
more amendable to experimental applications and, on the
other hand, consistent with the Cooper-Zare central-potential
formula®” and the previously reported mixed s-p model.”
From the rigorous derivation, a simple empirical form has
emerged, allowing for an easy description of the mixing
of any number of atomic orbitals of any type. The use of
Hanstorp et al.’s approximation®® and the assumption of zero
phase-shifts yielded a simplified description of the photoelec-
tron anisotropy parameter as a function of electron kinetic
energy in the photodetachment from atomic, molecular, or
cluster anion states of any mixed character, which can be com-
pared to the experiment.

While this work addressed photodetachment from (in
principle) any anionic MO, parts of the fundamental formal-
ism in Sec. I may also be useful in describing photoionization
processes. However, the following limitations must be consid-
ered. First, the Hanstorp approximation is not valid in neutral-
molecule ionization. Second, this work took no account of
electron scattering from a non-spherical Coulomb potential.

J. Chem. Phys. 141, 124312 (2014)

The scattering can be neglected in most photodetachment pro-
cesses, due to the relatively weak and short-range nature of
electron-neutral interactions. In neutral-molecule ionization,
it will not only affect the partial-wave composition of the free-
electron wavefunction but also lead to non-negligible phase-
shifts between the partial waves.

The specific photodetachment scenarios considered here
within the general model framework include the s-p and p-d
mixing cases. The s-p mixing predictions are completely con-
sistent with the previous mixed s-p model?? results. The newly
derived p-d variant of the model is shown to reproduce the ob-
served anisotropy trend in NO~ photodetachment with phys-
ically meaningful parameter values. The successful modeling
of this benchmark system further validates both the p-d mix-
ing equation and the generalized mixing model from which it
was obtained.
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