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Photoelectron angular distributions in negative-ion photodetachment
from mixed sp states
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We describe an approach for constructing analytical models for the energy-dependence of photoelec-
tron angular distributions in the one-electron, non-relativistic approximation. We construct such a
model for electron emission from an orbital described as a superposition of s- and p-type functions,
using linearly polarized light. In the limits of pure s or pure p electron photodetachment or photoion-
ization, the model correctly reproduces the familiar Cooper–Zare formula. The model predictions
are compared to experimental results for strongly solvated H− and NH2

−, corresponding to predom-
inantly s and predominantly p character parent states, respectively. © 2011 American Institute of
Physics. [doi:10.1063/1.3653234]

I. INTRODUCTION

Photoelectron imaging has become increasingly
widespread in the study of gas-phase negative ions.1 This
technique2–4 yields both photoelectron energy spectra and
the corresponding angular distributions from a single ex-
periment. While interpretation of the photoelectron spectra
in terms of binding energies, Franck-Condon overlap and
relative energy levels of the corresponding neutral relies on
routine methods of classic photoelectron spectroscopy,5, 6 the
process of extracting information from photoelectron angular
distributions remains less developed.7–12

For one-photon electron detachment or ionization with
linearly polarized light, photoelectron angular distributions
(PAD) have the general form:13–15

I (θ ) = σtot

4π
[1 + β(3 cos2 θ − 1)/2], (1)

where the anisotropy parameter β (ranging from −1 to 2)
completely defines the PAD with respect to the direction of
the electric field vector of the incident radiation. On a concep-
tual level, it is often convenient to consider photodetachment
or photoionization under the one-electron approximation. In
this case, the wave functions of all other electrons in the sys-
tem are presumed unchanged and the transition dipole matrix
elements are evaluated between the initial (bound) and the fi-
nal (free) states of the one electron involved in the transition.
One may also neglect interchannel interactions and relativistic
effects. This picture is admittedly crude, yet it often captures,
at a qualitative level, the essential physics—and chemistry—
of the process.

According to the derivations by Bethe,16 generalized by
Cooper and Zare,14, 15 the anisotropy parameter for photode-
tachment or photoionization for an atomic system is given by
the Cooper–Zare equation:

β = �i(�i − 1)χ2
�i ,�i−1 + (�i + 1)(�i + 2)χ2

�i ,�i+1 − 6�i(�i + 1)χ�i,�i+1χ�i,�i−1 cos(δ�i+1 − δ�i−1)

(2�i + 1)[�iχ
2
�i ,�i−1 + (�i + 1)χ2

�i ,�i+1]
, (2)

where �i is the orbital angular momentum quantum number
of the parent orbital, χ�i,�i±1 are the radial matrix elements
for the dipole-allowed free-electron partial waves with � = �i

± 1, and δ�i±1 are the corresponding phase shifts induced by
interactions with the remaining neutral species or cation.

In the particular case of photodetachment or photoion-
ization from an s orbital (�i = 0), Eq. (2) predicts a perfect
β = 2, regardless of electron kinetic energy. Alternatively,
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one may arrive at the same prediction by making use of the
one-electron selection rule, 	� = ± 1 and 	m� = 0, to de-
termine that the process should yield an outgoing p wave
(� = 1), polarized the same way as the light source. Such a
wave corresponds to a cosine-squared angular distribution,
described by Eq. (1) with β = 2. This prediction is con-
sistent with experimental observations for photodetachment
from an s orbital.17–19 In photodetachment or photoionization
from an atomic p orbital, photoelectron waves with � = 0 and
2 are allowed. The photoelectron wave function is a coherent
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superposition of these waves and the resulting PAD is depen-
dent on electron kinetic energy, ε. Although Eq. (2) does not
contain ε explicitly, the dependence is realized through the
radial matrix elements χ�i,�i±1.

The Cooper–Zare equation (Eq. (2)) can be rearranged
to show that β is dependent not on the matrix elements
themselves, but the ratio of χ�i,�i+1 and χ�i,�i−1. In anion pho-
todetachment, this ratio is often expected to vary linearly with
energy, as originally noted by Hanstorp et al.20 This sim-
plification can be deduced from the Wigner law21 for anion
photodetachment, σ � ∝ ε�+1/2, since the partial-wave cross
sections (σ �) are proportional to the squares of the corre-
sponding matrix elements, σ� ∝ χ2

�i ,�
(� = �i ± 1).

A common criticism concerning the use of the Wigner-
law proportionality over energy ranges spanning several
electron-volts is that the law, being a threshold law, is
strictly valid only at vanishingly small kinetic energies.21–24

However, decades of successful and diverse applications of
Hanstorp et al.’s approach20 appear to suggest that, while
the Wigner law predictions of partial wave cross sections
are not accurate outside the threshold regime, its predic-
tions of cross section ratios probably are.10, 18, 25–39 Assum-
ing σ�i+1/σ�i−1 ∝ ε2 and, therefore, χ�i,�i+1/χ�i ,�i−1 = Aε,
where A is a proportionality coefficient, Eq. (2) can be rear-
ranged to allow the calculation of β as an explicit function of
ε via the Wigner–Bethe–Cooper–Zare (WBCZ) equation:20

β = �i(�i − 1) + (�i + 1)(�i + 2)A2ε2 − 6�i(�i + 1)Aε cos(δ�l+1 − δ�i−1)

(2�i + 1)[�i + (�i + 1)A2ε2]
. (3)

Photodetachment from molecular systems has been
considered analogously, though with two notable differences.
First, as � is not a rigorous quantum number for non-atomic
species, group theory has been used to identify all transition-
dipole-allowed contributions to the photoelectron wave.24, 28

Second, the angle-resolved differential cross sections result
from averaging over all orientations of the system with respect
to the laboratory frame and, therefore, polarization direction
of the incident radiation.13–15, 24, 40 In the absence of spherical
symmetry, orientation averaging can be treated either exactly,
by explicit integration, or approximately, by considering a
limited number of symmetry-adapted “principal” orientations
of the molecule in the laboratory frame.9, 10, 28, 41–43

In many notable cases, it has been pointed out that the
parent molecular orbital may be described as essentially an
atomic s, p, or d-like function. For example, the chemistry
of carbenes and the photodetachment of carbene anions are
largely controlled by the non-bonding p (σ or π ) orbitals on
the central carbon atom.44–46 Similarly, the highest-occupied
molecular orbital (HOMO) of O2

−, a πg
*(2p) molecular

orbital, is well described as a d-like function (effective
�i = 2).24, 37 However, in other cases a single function with
defined �i value may not be sufficient, as for parent states that
are best described as superpositions of two or more atomic-
like orbitals. For example, describing the π*(2p) HOMO of
the NO− anion as a d-like molecular orbital is useful, but
not as good an approximation as in the O2

− case,31 while de-
scribing this HOMO as a sum of d and p functions would be
more appropriate. Other important examples include hybrid
orbitals and atomic orbitals perturbed by interactions with
strong-solvent molecules, such as s or s-like states polarized
by directional charge-dipole interactions.

Despite the developments in photoelectron imaging,
there is no simple analogue of the Cooper–Zare central-
potential model for cases of mixed-character states, where the
parent orbital is represented as a linear combination of two (or

more) atomic-like functions with different �i values. In what
follows, we take a step towards developing such a model and
describe a non-perturbative analytic approach to photoelec-
tron angular distributions for photodetachment or photoion-
ization from an orbital of mixed character with linearly polar-
ized light within the non-relativistic, one-electron picture.

In general terms, the angular component of the parent
orbital—regardless of its identity—is expanded in the com-
plete basis of the spherical harmonics (centered at a con-
venient point, not necessarily coinciding with any particular
atom in the molecule). In our approach, orientation averag-
ing inherent in the transformation from the molecular to the
laboratory frame is treated approximately by considering only
a few “principal” orientations.28, 43 The atomic selection rules
are applied to each spherical harmonic contributing to the par-
ent orbital to determine the allowed partial waves emitted for
each principal orientation. The angular component of the pho-
toelectron wave function resulting from each principal orien-
tation is expressed as a coherent superposition of the allowed
spherical harmonics. The angular distributions for different
principal orientations are then combined incoherently, on the
assumption that the timescale of rotation is long relative to the
photodetachment timescale.

The specific object of this paper is to explicitly demon-
strate this approach on the simplest case, that of a parent or-
bital represented as a combination of bound s and p func-
tions (i.e., the angular part of the parent wave function is
a linear combination of spherical harmonics for �i = 0 and
1). In Sec. II, we construct an expression for the photoelec-
tron anisotropy parameter in terms of fractional p charac-
ter of the parent state, relative partial-wave cross sections,
and the phase shift between different allowed photoelectron
partial waves. We show that in the limits of pure s or pure
p electron photodetachment or photoionization, the resulting
expression reduces to the familiar Cooper–Zare formula.14, 15

Hence, the principal result of Sec. II is a generalization of the
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Cooper–Zare equation for the case of mixed s and p state pho-
todetachment (photoionization). In Sec. III, we compare the
model predictions to experimental data for strongly solvated
H− and NH2

− anions,47 corresponding to the strongly per-
turbed, predominantly s and predominantly p parent states,
respectively.

II. THE MODEL

A. Photodetachment/photoionization from a
superposition of s and p states

We now build a one-electron model for photodetachment
from a stationary state whose angular dependence may be
expanded as a linear combination of one s- and one p-type
function,

|ψi〉 =
√

1 − f |s〉 +
√

f |p〉 , (4)

where f is the fractional p-character of the state (0 ≤ f ≤ 1).
Any relative phase factors for the s and p contributions to |ψ i〉
are absorbed into the corresponding kets. Moreover, without
loss of generality, we define the direction of the p term in
Eq. (4) as the molecular-frame z axis.

Similar to the initial (bound) state, we shall describe the
free (emitted) electron as a superposition of partial waves with
defined l values. In accordance with dipole selection rules, the
s term in Eq. (4) will give rise to p partial waves, while the p
term will yield s- and d-type partial waves. The laboratory-
frame PAD depends upon the partial waves emitted for all
possible orientations of the parent orbital. The net observed
photoelectron probability distribution may be written as an
incoherent superposition of the distributions resulting from
principal orientations:28

I (θ ) ≈ IX(θ ) + IY(θ ) + IZ(θ ), (5)

where subscripts X, Y, and Z indicate the orientations of the
molecular frame relative to the laboratory frame, defined so
that the molecular-frame quantization axis (z) is parallel to
the laboratory-frame x, y, and z axes, respectively.

We set the direction of the light’s electric field vector
as the laboratory frame z axis and hereon define the projec-
tion quantum numbers for all emitted partial waves relative to
this axis. Principal orientation Z corresponds to the p compo-
nent of the parent orbital (Eq. (4)) aligned along z. Within the
electric-dipole approximation, this orientation yields a p0 =
pz partial wave resulting from the s term in Eq. (4) and a com-
bination of s and d0 = dz2 partial waves resulting from the p
term.

For orientations X and Y, the s component of the parent
orbital also yields a pz partial wave. The p term in Eq. (4) for
these orientations transforms as laboratory-frame px and py

functions, respectively. In terms of quantum numbers, these
functions are linear combinations of p±1, which upon pho-
todetachment yield d±1 partial waves. These transformations
are summarized and illustrated graphically in Figure 1.

Using Eq. (1), we may express the photoelectron
anisotropy parameter β as

β = ρ − 1

1 + ρ/2
, (6)

FIG. 1. Graphical representation of the partial-wave contributions from s
and p parent orbital components for three principal orientation. See text for
details.

where

ρ = I (0◦)

I (90◦)
. (7)

We therefore need only know the ratio of the photoelec-
tron intensities at θ = 0◦ and 90◦ in order to write an ex-
pression for β, and may neglect all terms in Eq. (5) with no
contribution to I(0◦) and I(90◦).

In calculating the net orientation-averaged photoelectron
intensities, to each principal orientation there corresponds an
additional term resulting from the opposite direction of the
molecular-frame z axis in the laboratory frame. Because the p
wave has ungerade symmetry, while s and dz2 waves are ger-
ade, there is no net s–p or p–d interference. For these reasons,
we consider only the original X, Y, and Z orientations and
neglect the s–pz and the pz–dz2 cross terms.

Referring to Figure 1 and making use of the axial sym-
metry of the s, pz, and dz2 functions with respect to the z axis,
we may write:

I (θ ) = |(θ )|2 = |
√

f eiδ0C0Y00(θ ) +
√

f ei(δ2+π)C2Y20(θ )|2

+ 3|
√

1 − f ei(δ1+π/2)C1Y10(θ )|2 + [dxz, dyz terms],

(8)

where Y�m are the spherical harmonics and Cl the coefficients
for the corresponding partial waves. The coefficients are as-
sumed proportional to the radial matrix elements χ�i,�i±1 con-
necting the partial waves with the relevant components of the
parent orbital, namely: C0 ∝ χ1, 0, C1 ∝ χ0, 1, and C2 ∝ χ1, 2.
The first square-modulus term in Eq. (8) accounts for the su-
perposition of the s and dz2 partial waves resulting from orien-
tation Z. The net amplitudes of these waves are proportional to
the amplitude of the p component of the parent orbital,

√
f ,

per Eq. (4). The second square-modulus term describes the
contribution of the pz waves resulting from each of the three
(hence the factor 3 in front) principal orientations. The ampli-
tude of each of these waves is proportional to the amplitude
of the s component of the parent orbital,

√
1 − f . The phase

shifts of π /2 and π are due to interactions of the p and d waves
(respectively) with the centrifugal barrier,48 while δl are addi-
tional phase shifts induced by interaction of the partial waves
with the neutral fragment. The contributions of the dxz, dyz

waves in Eq. (8) are not spelled out explicitly, because these
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waves have nodes at both θ = 0◦ and 90◦; moreover, we do
not consider their interference with the s and dz2 waves, be-
cause these waves are not emitted from the same principal
orientations (see Figure 1).

Using Eq. (8) and the spherical-harmonics properties,
we construct the parallel and perpendicular photoelectron
intensities:

I (0◦) = |
√

f eiδ0C0Y00(0◦) +
√

f ei(δ2+π)C2Y20(0◦)|2

+ 3|
√

1 − f · ei(δ1+π/2)C1Y10(0◦)|2, (9)

I (90◦) = |
√

f eiδ0C0Y00(90◦) +
√

f ei(φ2+π)C2Y20(90◦)|2.
(10)

We arbitrarily define the spherical harmonics as unnor-
malized functions (Y00 = 1, Y10 = cosθ , Y20 = 3cos2θ − 1),
incorporating the necessary normalization constants in the co-
efficients Cl. Equations (9) and (10) may then be simplified to

I (0◦) =f C2
0 + 3(1 −f )C2

1 + 4f C2
2 − 4f C0C2 cos(δ2 − δ0),

(11)

I (90◦) = f C2
0 + f C2

2 + 2f C0C2 cos(δ2 − δ0). (12)

The absence of δ1 in Eqs. (11) and (12) reflects the lack
of net interference between the � = 1 partial waves and the
� = 0, 2 waves. Substituting Eqs. (11) and (12) into Eq. (7)
yields

ρ = f C2
0 + 3(1 − f )C2

1 + 4f C2
2 − 4f · C0C2 cos(δ2 − δ0)

f C2
0 + f C2

2 + 2f C0C2 cos(δ2 − δ0)
.

(13)

And finally, substituting Eq. (13) into Eq. (6) and divid-
ing both the numerator and the denominator of the resulting
fraction by C2

0 gives

β = 2(1 − f )(C1/C0)2 + 2f (C2/C0)2 − 4f (C2/C0) cos(δ2 − δ0)

f + 2f (C2/C0)2 + (1 − f )(C1/C0)2
. (14)

Due to the assumptions made along the way, this equa-
tion is approximate. However, in the limit of f = 0, it reduces
to β = 2, as expected for detachment from a pure s orbital
(�i = 0). In the limit of f = 1, Eq. (14) similarly reduces to
the Cooper–Zare expression (Eq. (2)) for photodetachment
from a p orbital (�i = 1), since C2/C0 = χ1, 2/χ1, 0. Hence,
the general approach of the model seems to provide a simple,
alternate way to arrive at the Cooper–Zare equation.

B. Application to anion photodetachment

The primary objective in developing this model has
been to construct an analytical expression for the energy-
dependence of photoelectron anisotropy parameters that may
be fit to experimental data. For anions, the energy-dependence
of β arises due to the energy-dependence of the rela-
tive partial-wave cross sections. Assuming, as before,20 the
Wigner-law21 scaling of the partial cross sections σ �, we may
write:

C2
1

C2
0

= χ2
0,1

χ2
1,0

= σ1

σ0
= Bε, (15)

C2
2

C2
0

= χ2
1,2

χ2
1,0

= σ2

σ0
= A2ε2, (16)

where A and B are constants. Substituting Eqs. (15) and (16)
into (14) yields β as an explicit function of electron kinetic

energy:

β = 2(1 − f )Bε + 2f A2ε2 − 4f Aε cos(δ2 − δ0)

f + 2f A2ε2 + (1 − f )Bε
. (17)

This is the main result of the model. It differs from the
WBCZ model (Eq. (3)) in that it describes photodetachment
from a mixed sp orbital. We expect that the approach of the
model can be readily generalized for other types of mixed par-
ent states. Although several approximations have been made
in the derivation of Eq. (17), the overall approach is non-
perturbative, as no assumptions are made about the magnitude
of the net p-character of the parent state, 0 ≤ f ≤ 1. In the two
limiting cases, f = 0 and f = 1, Eq. (17) reduces exactly to
the respective WBCZ predictions for detachment from s and
p orbitals. Constant A in Eq. (17) has the same meaning as in
Eq. (3),20 while parameter B is newly introduced here, in or-
der to similarly describe the relative scaling of the � = 1 and
� = 0 cross sections.

For the purpose of illustration, in Figure 2, we arbitrarily
assumed A = B and plotted β (as given by Eq. (17)) as a func-
tion of Aε (= Bε) for several values of f ranging from 0 to 1.
We note that β always approaches 0 in the limit of ε → 0, as
long as f 	= 0. That is the s waves dominate, no matter how
small the net p-character of the parent state.

III. COMPARISON TO EXPERIMENT

Equation (17) may be used to model experimental data
for photodetachment from a system that may be approximated
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FIG. 2. Energy dependence of the anisotropy parameter for photodetachment
from mixed sp states, as given by Eq. (17) for different values of f between
0 and 1 in increments of 0.1, assuming A = B and δ = 0. For example, if A
= 1 eV−1, the horizontal axis corresponds to ε in eV.

as a linear superposition of bound s and p functions. The
H− and NH2

− anions, respectively, solvated by ammonia, are
excellent trial systems for this model. In the accompanying
paper,47 we reported our recent experimental results for the
H−(NH3)n and NH2

−(NH3)n cluster anions. Here, we use the
formalism developed in Sec. II to model the PADs observed
in the photodetachment of these strongly solvated ions.

In the first example (Sec. III A), electron emission from
H−(NH3)n involves strongly perturbed, but predominantly s
parent states. We approximate the solvation effects on the
ground state of H− by adding a p polarization term to the par-
ent s orbital (via Eq. (4)) and apply the model (Eq. (17)) in
the regime of small (but not necessarily perturbatively small)
f. In the second case (Sec. III B), the HOMO of NH2

− is a
non-bonding p orbital localized on the nitrogen atom. Solva-
tion by ammonia breaks the orbital symmetry and thus affects
the PAD. In Sec. III B, we attempt to describe this effect by
adding an opposite-symmetry s term to the parent state, uti-
lizing Eqs. (4) and (17) with large (close to 1) values of f.

A. Solvated H−: Polarized s state photodetachment

In an isotropic environment, the electron density in the
hydride anion is spherically symmetric. In the photodetach-
ment from the 1s orbital of H−, only � = 1 waves are allowed.
Accordingly, the Cooper–Zare model (Eq. (2)) and, by exten-
sion, the WBCZ equation (Eq. (3)) predict β = 2, independent
of photon wavelength or electron kinetic energy.

The presence of solvent breaks the spherical symme-
try, resulting in the lifting of some angular-momentum re-
strictions on the partial waves emitted in electron photode-
tachment. In particular, � = 0 partial waves may become
dipole-allowed in the photodetachment of H−(X)n cluster
anions, where X is arbitrary solvent. The opening of the
� = 0 channel has a profound effect on the PADs, partic-
ularly at small ε, where s waves are expected to dominate
over � = 0 contributions,24 as prescribed by the Wigner law.21

FIG. 3. Experimental (symbols) energy-dependence of photoelectron
anisotropy parameters for photodetachment from (a) H−(NH3)n, n = 0−5
at 532 and 355 nm, n = 0−2 at 786 nm (data from Ref. 47) and (b)
NH2

−(NH3)n, n = 0−5 at 532 and 355 nm, n = 0 at 786, 488, and 351 nm
(data from Refs. 47, 49, 50). Lines correspond to predictions of the current
model (Eq. (17)) for indicated values of f. See text for details.

This effect is clearly borne out in our photoelectron imaging
data for H−(NH3)n, n = 1–5 cluster ions,47 included here in
Figure 3(a), where the observed β values deviate drastically
from the Cooper–Zare prediction of β = 2, particularly at
small ε.

To model this effect, we first turn to the H−(NH3) clus-
ter anion, in which the solvent-induced perturbation of the 1s
orbital of H− may be approximated as a charge-dipole interac-
tion polarizing the orbital along the interaction axis. The per-
turbed orbital, lacking inversion symmetry, must be described
as a linear combination of even and odd functions, so we com-
bine the initial s orbital of H− with a p-type function polarized
along the direction of the interaction (Eq. (4)).

We have plotted the prediction of our model (Eq. (17)) for
f = 0.026 (solid grey curve) and 0.035 (dashed grey curve) in
Figure 3(a). As the phase shift between the � = 0 and 2 partial
waves is typically small for atomic anion photodetachment,
cos(δ2 – δ0) has been set to 1; we have also arbitrarily set A
= B = 1 eV−1. The model result qualitatively agrees with
the experimentally determined trends in β for H−(NH3)n,
n = 1–5 cluster ions. In fact, the two plotted curves overlap
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quite well with the experimental data for H−(NH3) and
H−(NH3)2, respectively. Most importantly, the model cor-
rectly predicts the rapid decrease in photoelectron anisotropy
with decreasing ε—the effect that the WBCZ model cannot
account for.

We note that any number of solvent molecules could be
viewed as introducing additional p-components in the parent
orbital at different positions relative to the first, depending on
the cluster geometry. Considering all relevant orientations of
these additional components would yield additional s and d
partial-waves. However, the value of f in Eq. (4) does not nec-
essarily increase with increasing n. The p polarization term in
this case can be regarded as a measure of solvation asymme-
try, which is expected to become small as the first solvation
shell is completed.

The approximation of the parent orbital as a linear com-
bination of s and p states is likely to become less rigorous for
the H−(NH3)n, n > 1 clusters. However, � = 0 partial waves
resulting from any solvation-induced p character in the parent
orbital will always dominate over partial-waves with larger �

values at small ε, resulting in decreasing β values as ε → 0.

B. Solvated NH2
−: Perturbed p state photodetachment

We now consider the photoelectron angular distributions
for solvated NH2

− by comparing the model prediction to the
photoelectron imaging results for NH2

−(NH3)n, n = 1–5 clus-
ter anions, included in Figure 3(b).47 The non-bonding b1

HOMO of unsolvated NH2
− is essentially a p orbital on the

nitrogen atom. Upon solvation, the electron density within the
anion should be perturbed along the solvent-ion interaction
axis, in general breaking the ungerade symmetry of the or-
bital. The effect may be described by adding gerade perturba-
tion terms to the original p function. For most solvation ge-
ometries, the first term in the perturbation expansion is likely
to be an s-like function. Under this approximation, we may
also use Eq. (17) to model β vs. ε for photodetachment from
solvated NH2

−, treating the parent orbital as a p orbital with
some s character (Eq. (4) with f close to 1).

The model prediction for f = 0.90 is plotted in Figure 3(b)
as a dashed line, again assuming A = B and using the param-
eters determined for bare NH2

−: A = 1.09 eV−1 and cos(δ2 −
δ0) = 0.934.47 The model prediction compares favorably with
the experimental data; however, it is not too different from
the prediction of the unmodified (f = 1) WBCZ model (grey
curve in Figure 3(b)).

Overall, perturbation alters the β(ε) dependence result-
ing from a predominantly p parent state to a smaller degree
than for s-orbital photodetachment. This conclusion may be
understood by considering that in pure s state photodetach-
ment, only � = 1 waves are allowed, corresponding to the
theoretical WBCZ limit of β = 2. Addition of any p char-
acter to the parent state opens the � = 0 channel, which, due
to the Wigner law, dominates the photodetachment process
at small-to-moderate ε.21, 24 To the contrary, in p state pho-
todetachment, addition of some s character to the initial state
leads to the opening of the � = 1 channel, which, by the same
logic, does not compete favorably with the � = 0 waves emit-
ted from the unperturbed p state.

IV. SUMMARY

We have presented a simple non-perturbative approach
to modeling photoelectron angular distributions for photode-
tachment or photoionization from a mixed sp state. We de-
rived an analytical expression for the energy-dependence of
the photoelectron anisotropy parameter, β, for the case of
photodetachment, which includes parametric dependence on
the fractional p character on the parent state. The predictions
of the model are compared to experimental results for solvated
H− and NH2

− and the model is found to be in agreement with
experiment.
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