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Photodetachment anisotropy for mixed s-p states: 8/3 and other fractions
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An approximate model for analytical prediction of photoelectron angular distributions in anion pho-
todetachment from mixed s-p states is presented. Considering the dipole-allowed s, p, and d free-
electron partial waves, the model describes photodetachment anisotropy in terms of the fractional p
character of the initial orbital and the A and B coefficients describing the relative intensities of the
p → d to p → s and s → p to p → s channels, respectively. The model represents an extension
of the central-potential model to an intermediate regime encompassing varying degrees of s and p
contributions to the initial bound orbital. This description is applicable to a broad class of hybrid
molecular orbitals, particularly those localized predominantly on a single atom. Under the additional
assumption of hydrogenic or Slater-type orbitals, the B/A ratio in photodetachment from a mixed
2s-2p state is shown to equal 8/3. Corresponding fractions are derived for other ns-np mixing cases.
The predictions of the model are tested on several anion systems, including NH2

− and CCl2−. The
quantitative discrepancies in the latter case are attributed to the breakdown of the central-atom ap-
proximation and a mechanism for corresponding corrections is indicated. © 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4789811]

I. INTRODUCTION

The photoelectron angular distributions (PADs) result-
ing from one-photon detachment or ionization provide in-
sight into the properties of the parent orbitals.1–4 If the initial
state of the electron is described by a definite value of the or-
bital angular momentum quantum number, �, as in the case of

atomic species, the emitted electrons are represented by su-
perpositions of the dipole-allowed partial waves with �f = �

± 1. According to the derivations by Bethe5 generalized by
Cooper and Zare,6, 7 the anisotropy parameter1, 6, 7 β for pho-
toemission using linearly polarized light in this case is given
by the Cooper-Zare equation:

β = �(� − 1)χ2
�,�−1 + (� + 1)(� + 2)χ2

�,�+1 − 6�(� + 1)χ�,�+1χ�,�−1 cos(δ�+1 − δ�−1)

(2� + 1)[�χ2
�,�−1 + (� + 1)χ2

�,�+1]
, (1)

where χ�, � ± 1 are the radial dipole matrix elements for the �f

= � ± 1 partial waves, while (δ� + 1 − δ� − 1) is the phase
shift induced by interactions with the remaining neutral or
cation.

Equation (1) is not generally applicable to molecular an-
ions or any species, for which � is not a good quantum num-
ber. In some cases, when the molecular orbital (MO) resem-
bles an atomic-like wavefunction, an effective-� description
may be adopted. For example, the 2pπg

∗ highest-occupied
MO (HOMO) of O2

− is a d-like function and the photodetach-
ment of O2

− can be modeled approximately using the central-
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potential model6, 7 with � = 2.8–10 However, most MOs cannot
be assigned effective � values, as any adequate description of
their angular dependence must include multiple spherical har-
monics with different values of �.

Modeling the PADs in such cases is not a trivial pur-
suit, but direct computations that account for the complex-
ity of the electronic structure, wave interference, relaxation
effects, and orientation averaging have been successfully
demonstrated.3, 11–14 The rich mathematical details of such
calculations may complicate the underlying physics of pho-
toemission, in contrast to the transparent meaning of the
Cooper-Zare equation. Hence, one often finds that intuitive
physical insights require some simplifying assumptions. The
objective of the present work is to tackle certain common
cases of molecular anion photodetachment at a conceptual
level, focusing not so much on the computational details, but
on the formal analytical description of the process. The goal
is, in essence, to describe the physics of photodetachment
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from several model molecular systems by relying, as much
as possible, on a pen and paper only.

Specifically, we address the photodetachment from
mixed s-p (hybrid spn) orbitals. Such orbitals are ubiquitous
in chemistry, yet until recently15 there had been no analogue
of the Cooper-Zare equation to describe the PADs in photode-
tachment from such mixed states. Intuitively, one expects the
photodetachment from a mixed s-p state to fall into an inter-
mediate realm between the pure s and pure p cases. We aim
to provide an approximate analytical description of this inter-
mediate regime.

As a starting point, we recently introduced an s-p mix-
ing approach that describes the initial state as a linear com-
bination of bound s and p orbitals.15 This approach is dis-
tinct from the so-called s&p model,4, 16 which considers the
contributions of s&p partial waves of the emitted (rather than
bound) electrons. Here, we continue the development of the
s-p mixing theory in the central-atom approximation (where
the mixed s and p functions are localized on the same center)
and apply the results to two model anions, NH2

− and CCl2−.
These anions and the specific transitions within them are cho-
sen strategically to represent the following contrasting cases.
First, the s-p mixed (HOMO-1) of NH2

− is of predominantly
p character, while the corresponding orbital in CCl2− has a
large s component. Second, the NH2

− initial state is well de-
scribed within the central-atom approximation, while that of
CCl2− is not.

In Sec. II, we introduce these model anions at summa-
rize the experimental findings that will be used for evaluating
the quality of the model. Section III is the heart of this work,
where we develop a formal analytical description of the model
and its parameters. Consistent with the above objectives, all
derivations and calculations in Sec. III can be (have been)
carried out in the most general form, using a pen and paper
only. Section IV is devoted to the evaluation of the model pa-
rameters. Most analysis in this section is done by referencing
the theory to relevant experimental results, still emphasizing
formal analytical derivations rather than numerical calcula-
tions. Only in Sec. IV C do we involve electronic-structure
calculations using the GAUSSIAN 98 software package.17

Throughout Secs. I–IV, we emphasize the generality of the
model, while finally in Sec. V the model predictions are
compared to the experimental results for the chosen anions.
In light of the comparison, we re-evaluate the central-atom
approximation and suggest remedies for dealing with the
discrepancies.

II. MODEL ANIONS

Figure 1 gives a crude view of the NH2
− and CCl2− elec-

tronic structures in the central-atom approximation. In each
case, the b1 symmetry HOMO has the dominant character
of a non-bonding 2p(π ) orbital of the central atom (nitrogen
or carbon, respectively). The detachment of the b1 HOMO
electron yields the 2B1 ground electronic state of neutral ami-
dogen or the 1A1 ground state of dichlorocarbene.18 Both a1

(HOMO-1) orbitals are nominally non-bonding, hybrid lone-
pair orbitals on the central atom. This description is a stag-

FIG. 1. Schematic illustration of the b1 HOMO and a1 (HOMO-1) orbitals
of NH2

− and CCl2− (in the central-atom approximation—see the text for
details). The b1 HOMO has the dominant character of a non-bonding 2p or-
bital of N or C, respectively. The detachment of the b1 electron yields the
2B1 ground electronic state of NH2 or the 1A1 ground state of CCl2. The a1
(HOMO-1) orbital in each case is a nominally spn hybrid (lone-pair) orbital,
regarded as predominantly a non-bonding 2p(σ ) orbital on the central atom.
Detachment of the (β spin) a1 electron accesses the 2A1 excited state of NH2
or the 3B1 state of CCl2.

gering oversimplification, particularly for CCl2−, as discussed
later in this paper. Detachment of the β-spin a1 electron from
the anion accesses the 2A1 excited state of NH2 or the 3B1

state of CCl2, respectively.
The relevant experimental results for these species are

presented in Figure 2 (NH2
−) and Figure 3 (CCl2−). De-

tails of the photoelectron imaging experiments are given in
the Appendix and Refs. 4 and 19–21. Both anions have
also been studied using photoelectron spectroscopy by other
groups.18, 22–25 As our findings are consistent with the past re-
sults, we shall limit the discussion to the data in Figures 2
and 3 only. The photoelectron spectra in Figs. 2(a) and 3(a)
reveal two bands each, corresponding to detachment from the
b1 (pure p) HOMO and a1 (mixed s-p) HOMO-1 orbitals of
NH2

− and CCl2−, respectively. The NH2
− image and spec-

trum in Figure 2(a) were reported previously as part of the
NH2

−(NH3)n dataset, in our work concerned exclusively with
the 2B1 transition.19 The present work will focus on the a1

−1

transitions, i.e., the 2A1 band in Figure 2(a) and the 3B1 band
in Figure 3(a), as the corresponding initial orbitals may be
described approximately as hybrids of the 2s and 2p atomic
orbitals of the central atom.

The qualitatively different characters of the a1 HOMO
and b1 (HOMO-1) orbitals in these anions are immedi-
ately apparent in the photoelectron angular distributions—
see, for example, the different PADs of the two bands in the
CCl2− photoelectron image in Figure 3(a). There, the PAD
of the b1

−1 channel, yielding 1A1 neutral carbene, is per-
pendicular (β < 0), characteristic of moderate-energy pho-
todetachment from a p-like state (as, for example, in O−

and I− photodetachment26–31). On the other hand, the a1
−1

PAD, corresponding to the 3B1 neutral state, is sharply par-
allel (β > 0), approaching the Cooper-Zare model predic-
tion for pure s state photodetachment. Thus, the PADs sug-
gest that the a1 (HOMO-1) of CCl2− is in fact of predomi-
nantly s character, contrary to the nominal sp2 hybridization
picture.

The quantitative anisotropy data for the respective NH2
−

and CCl2− a1
−1 detachment transitions, are plotted (as
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FIG. 2. Photoelectron imaging results for NH2
−. (a) 355 nm photoelec-

tron image (arbitrary velocity and intensity scales) and the correspond-
ing photoelectron spectrum. (b) Symbols: the anisotropy data for the 2A1
(a1

−1) band. Green curve: the WBCZ model prediction for pure p state
photodetachment, calculated using Eq. (6) with f = 1, Eq. (7) with Z =
0 or, equivalently, Eq. (2) with � = 1. Red curve: s-p mixing curve cal-
culated using the unmodified result of Eq. (32), B/A = 8/3, and assum-
ing the fractional p character of the parent a1 orbital f = 0.61 (Z = 1.7),
from the uncorrected ab initio central-atom prediction. Bold black curve:
model prediction using f = 0.96, corrected for the contributions of the H
atom orbitals (Z = 0.11). All model calculations assume A = 0.37 eV–1 and
cos(δ2–δ0) = 1.

symbols) versus electron kinetic energy (eKE ≡ ε) in
Figures 2(b) and 3(b). The PADs are indeed intermediate be-
tween the pure s and pure p state limits, with CCl2− data
falling closer to s and NH2

− to p. The remainder of this paper
develops a model description of these trends.

III. THE MODEL

A. Model approximations and formalism

1. Hanstorp’s approximation

The Cooper-Zare equation (Eq. (1)) can be rearranged
to show that β is dependent not on the matrix elements
themselves, but the ratio of χ�, � + 1 to χ�, � − 1. In anion
photodetachment, in particular, this ratio is often assumed
to vary linearly with electron kinetic energy. This simplifi-
cation, originally noted by Hanstorp et al.,26 follows from
the Wigner law32 for near-threshold photodetachment, σ�f

∝
ε�f +1/2, as the partial cross-sections are proportional to the

FIG. 3. Photoelectron imaging results for CCl2−. (a) 355 nm photoelec-
tron image (arbitrary velocity and intensity scales) and the corresponding
photoelectron spectrum. (b) Symbols: photoelectron anisotropy data for the
partially resolved vibrational peaks of the 3B1 (a1

−1) band, indicated with
the same diamond symbol in (a). The purple square corresponds to the
overall anisotropy parameter calculated by integration over the entire 3B1
band. Green curves: the WBCZ model predictions for pure s and pure p
state photodetachment, calculated using Eq. (6) with f = 0 or 1, Eq. (7)
with Z → ∞ or Z = 0, as indicated, or, equivalently, using Eq. (2) with
� = 0 or 1, respectively. Red curve: the s-p mixing curve calculated using
B/A = 8/3 (Eq. (32)) and assuming the fractional p character of the par-
ent a1 orbital f = 0.27, from the uncorrected ab initio central-atom pre-
diction (Z = 7.2). Dashed black curve: the only simulation in this work
involving a fit of the s-p mixing equation (Eq. (7)) to experimental data.
It corresponds to Z = 27, which can be obtained, for example, by assum-
ing f = 0.27 and B/A = 10 or f = 0.09 and B/A = 8/3, as discussed in
Sec. V B. All model calculations for CCl2− assume A = 0.75 eV–1 and
cos(δ2–δ0) = 1.

squares of the corresponding matrix elements, σ�f
∝ χ2

�,�f

(�f = � ± 1).
Assuming σ � + 1/σ � − 1 ∝ ε2 and, therefore, χ�, � + 1/

χ�, � − 1 = A�ε, where A� is a proportionality coefficient,
Eq. (1) can be rearranged to allow the calculation of β as an
explicit function of ε, via the formula that we shall refer to as
the Wigner–Bethe–Cooper–Zare (WBCZ) equation:26
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β(ε) = �(� − 1) + (� + 1)(� + 2)A2
�ε

2 − 6�(� + 1)A�ε cos(δ�+1 − δ�−1)

(2� + 1)[� + (� + 1)A2
�ε

2]
. (2)

2. One-electron, single-center, and s-p mixing
approximations

As in the previous work,15 we consider single-photon,
one-electron photodetachment from a state represented as a
linear combination of one s and one p type function localized
on the same center (“central atom”) in the molecular frame:

|ψi〉 =
√

1 − f |s〉 +
√

f |p〉 , (3)

with f being the fractional p character of the state, 0 ≤ f
≤ 1. Any relative phase factors for the s and p contribu-
tions are absorbed into the corresponding kets. In our previ-
ous work,15 Eq. (3) was used to describe an s-like state polar-
ized by solvation interactions, but due to the non-perturbative
nature of the model, it can also be applied to a broad class
of mixed (hybrid) s-p orbitals. In this work, Eq. (3) will be
used to approximate canonical Hartree-Fock orbitals. How-
ever, without much extra effort or loss of generality the same
approach can be applied to Dyson orbitals that include corre-
lation and relaxation effects.13, 14, 33

Photodetachment from a one-electron mixed state de-
scribed by Eq. (3) will generally yield s, p, and d electric-
dipole allowed partial waves via the s → p and p → s, d
transitions. The resulting PAD will reflect the eKE-dependent
relative contributions of these waves. Assuming, as before,26

the Wigner-law32 scaling of the partial cross-sections, we may
write

σ2

σ0
= χ1,2

2

χ1,0
2

= A2ε2, (4)

σ1

σ0
= χ0,1

2

χ1,0
2

= Bε, (5)

where A and B are constant model parameters, while χ�, � ± 1

are the radial dipole integrals for the corresponding � → �

± 1 transitions.
Parameter A in Eq. (4) is a specific case (� = 1) of the

familiar A� coefficient appearing in Eq. (2). It describes the
relative scaling of the p → s and p → d channels. Throughout
this work, we adopt the notation A ≡ A1, i.e., no-subscript A
describes the detachment from a p state or a p component of
a mixed state. Other types of detachment processes will also
be considered, in particular the d → p and d → f transitions,
for which the A� coefficient will always be explicitly denoted
A2 (i.e., χ2,3/χ2,1 = A2ε, per Eq. (4)).

Parameter B in Eq. (5) was originally introduced in the
previous work15 in order to describe, in a similar way, the
relative scaling of the s → p and p → s channels. No gener-
alizations of the B coefficient for other types of mixed states
have been developed in the literature.

Under the assumptions of Eqs. (3)–(5), the anisotropy pa-
rameter β can be expressed as an explicit function of eKE:15

β = 2(1 − f )Bε + 2f A2ε2 − 4f Aε cos(δ2 − δ0)

f + 2f A2ε2 + (1 − f )Bε
. (6)

This result differs from the WBCZ model (Eq. (2)) in that it
describes photodetachment from a mixed s-p orbital, rather
than a state with a defined � value. In the limiting cases
f = 0 and f = 1, Eq. (6) reduces exactly to the respective
WBCZ predictions for detachment from pure s and pure p
states. For mixed states (f 	= 0), we rearrange Eq. (6) as
follows:

β =
2 1−f

f
B
A
ε + 2Aε2 − 4ε cos(δ2 − δ0)
1
A

+ 2Aε2 + 1−f

f
B
A
ε

= 2Zε + 2Aε2 − 4ε cos(δ2 − δ0)

1/A + 2Aε2 + Zε
. (7)

Thus, aside from the phase shift, the model anisotropy trends
β(ε) are determined by only two parameters, A and 1−f

f
B
A≡ Z, rather than three (A, B, and f), as may appear at first

from Eq. (6). The meaning of the newly introduced parameter
Z is transparent: for a given A, it describes the relative intensi-
ties of the s → p and p → s channels (via B), weighted by the
relative contributions of the s and p components to the initial
state, (1 − f)/f. The asymptotic value of Z for a pure s state is
Z → ∞, while that for a p state is Z = 0.

As in the previous work,15, 19 we will neglect the phase
shift in Eqs. (6) and (7) by setting cos(δ2 − δ0) = 1. The
appropriate values of A for each case will be determined from
experimental data, while Z (or, equivalently, B/A and f) will
be found from ab initio analysis. The model predictions will
be compared to the experimental results.

B. Free-electron waves

We now turn to explicit evaluation of the A and B
coefficients in Eqs. (6) and (7). The radial dipole inte-
grals defining A and B via Eqs. (4) and (5) are χ�, � ± 1

≡ 〈Rfree, � ± 1|r|Rn, �〉, assuming that the bound orbitals and
the free-electron waves are defined as the respective radial
functions, Rn, � and Rfree, � ± 1, multiplied by the corresponding
spherical harmonics. Assuming no interaction of the contin-
uum electron with the remaining neutral, the photodetached
electron can be represented by free spherical waves. The
radial functions Rfree, �(r) are then proportional to spherical
Bessel functions j�(kr).34, 35 In particular, the s, p, and d par-
tial waves are represented, respectively, by

j0(kr) = sin kr

kr
, (8)

j1(kr) = sin kr

(kr)2
− cos kr

kr
, (9)
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j2(kr) =
(

3

(kr)2
− 1

)
sin kr

kr
− 3 cos kr

(kr)2
. (10)

The proportionality coefficients between j�(kr) and Rfree, �(r)
depend on the normalization condition applied to the free-
electron waves. Two common normalization scales are dis-
cussed in Supplement A of the supplementary material.36

For the so-called k/2π scale, Rfree, �(r) are normalized per
k/2π interval, where k is the wavenumber corresponding to
electron momentum, k = p/h. The corresponding normalized
radial functions, denoted explicitly Rk, �(r), have the form,34

Rk,�(r) = 2kj�(kr). (11)

Another textbook variant of momentum-space normalization
is the k (rather than k/2π ) scale, whereas the radial functions
trivially differ from those in Eq. (11) by a factor of

√
2π .35

Since comparisons to the experiment are usually done in
the energy domain, it is convenient (but not strictly neces-
sary) to employ the alternative ε scale normalization per en-
ergy interval.37 This normalization was adopted, for example,
in the works of Bethe38 and Goldberg et al.39 The ε scale nor-
malized functions, denoted Rε, �(r) and expressed in atomic
units, have the form,

Rε,�(r) =
√

2k

π
j�(kr). (12)

The results of this work are not affected by the choice
of normalization. Nonetheless, the normalization coefficients
in Eqs. (11) and (12) do include photoelectron momentum, k.
For this reason, care should be taken in transformations be-
tween the k/2π and ε spaces, in order to preserve the proper
scaling of partial photodetachment cross-sections (see Sup-
plement A of the supplementary material).36

C. Radial dipole integrals and the A, B coefficients

The radial dipole integrals χ�, � ± 1 ≡ 〈Rfree, � ± 1|r|Rn, �〉
are defined by one of the following explicit expressions, de-
pending on the type of normalization employed. In momen-
tum space,

χk
�,�±1 =

∫ ∞

0
Rk,�±1(r)rRn,�(r)r2dr, (13)

while in energy space,39

χε
�,�±1 =

∫ ∞

0
Rε,�±1(r)rRn,�(r)r2dr, (14)

where the superscript k and ε indicate the corresponding nor-
malization scale (k/2π or ε, respectively). The additional r2

terms under the integrals arise from three-dimensional in-
finitesimal volume in spherical polar coordinates.

Substituting either Eq. (11) into Eq. (13) or, equivalently,
Eq. (12) into Eq. (14) and using the result in Eqs. (4) and (5),
the following explicit definitions of the A and B coefficients
are obtained:

Aε = χ1,2

χ1,0
=

∫ ∞
0 j2(kr)r3Rnp(r)dr∫ ∞
0 j0(kr)r3Rnp(r)dr

, (15)

Bε = χ0,1
2

χ1,0
2

=
(∫ ∞

0 j1(kr)r3Rn′s(r)dr
)2

(∫ ∞
0 j0(kr)r3Rnp(r)dr

)2 , (16)

where Rns(r) ≡ Rn,0(r) and Rnp(r) ≡ Rn,1(r) represent the s
and p components of the initial (bound) orbital. The prime in
Rn′s(r) in Eqs. (16) indicates that the s and p components of
the initial state do not have to correspond to the same princi-
pal quantum number. (For example, solvation-induced polar-
ization of H− was described by a small 2p-type contribution
added to the 1s orbital, i.e., n′ = 1 and n = 2.15, 19) In Eqs. (15)
and (16), the k or ε indexes for χ�, � ± 1 have been omitted, as
the normalization coefficients for Rk, �(r) or Rε, �(r) cancel out
in both cases and hence the type of normalization used does
not affect the radial element ratios. (However, the individual
scaling of the radial elements does depend on wavefunction
normalization, as discussed in Supplement A of the supple-
mentary material.)36

From Eqs. (15) and (16), the B/A ratio can be calculated
as

B

A
=

(∫ ∞
0 j1(kr)r3Rn′s(r)dr

)2∫ ∞
0 j0(kr)r3Rnp(r)dr

∫ ∞
0 j2(kr)r3Rnp(r)dr

. (17)

Similar to the χ�, � ± 1 ratios and the individual A and B co-
efficients in Eqs. (15) and (16), B/A defined by Eq. (17)
is independent of the type of normalization chosen for the
free-electron radial functions. However, since the integrals in
Eqs. (15)–(17) depend parametrically on k (and, therefore, ε),
so do, in general, the A and B coefficients and the B/A ratio.
This dependence vanishes only in the Wigner-like low-eKE
limit, as discussed in Sec. III E.

Equation (15) defines the A coefficient for detachment
from either a pure p orbital, or from the p component of a
mixed orbital (i.e., A ≡ A1 in the more general notation of
Eq. (2)). The equation is easily generalized for photodetach-
ment from any n� (n > � ≥ 1) orbital, as follows:

A�ε = χ�,�+1

χ�,�−1
=

∫ ∞
0 j�+1(kr)r3Rn,�(r)dr∫ ∞
0 j�−1(kr)r3Rn,�(r)dr

. (18)

Equation (16) for the B coefficient, on the other hand, cannot
be generalized in a similar fashion, because Eq. (6), where
this coefficient first appears, was derived for the specific case
of photodetachment from a mixed s-p orbital.

D. Low-eKE approximation

We now turn to the Wigner-like slow-electron
limit,32, 40, 41 originally assumed by Hanstorp et al.26 to
define the A� constant in Eq. (2). This limit is defined by
kr � 1 in the region of significant overlap of the free-electron
waves and the initial bound state. If the extent of the initial
state is assumed to be on the order of the Bohr radius a,
the above condition corresponds to ka � 1 or ε � −h2/2ma2

= 1/2 a.u. = 13.6 eV. However, this estimate is misleading,
as non-trivial magnitudes of most anionic orbitals of interest
extend to multiples of a, so the low-eKE condition is in
fact far more restrictive, expressed rather as ε � 1 eV.
The role of very diffuse asymptotic tails of anion orbitals
in photodetachment processes is well known14 and further
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emphasized throughout this article and in Supplement B of
the supplementary material.36

The slow-electron approximation implied in Eq. (2) is,
nonetheless, commonly and successfully used to interpret
PADs in anion photodetachment over broad ranges of eKE
(up to several eV). In what follows, we too adopt this approx-
imation, as our objective is to generalize the WBCZ equation
(Eq. (2)) to the mixed s-p case (Eq. (6)); in order to do so, one
must rely on similar fundamental assumptions. The robust-
ness and the limitations of this approach, specifically, why
it seems to work even outside the strict Wigner-like regime,
are touched upon in Supplement C of the supplementary
material.36

In the Wigner limit (kr → 0), the spherical Bessel
functions can be replaced by the leading terms of their
Maclaurin series expansions, giving rise to the known origin
behavior,34, 35

j�(kr) ∼= (kr)�

(2� + 1)!!
, for kr → 0. (19)

The specific � = 0 − 2 functions in Eqs. (8)–(10) behave as
j0(kr) ∼= 1, j1(kr) ∼= kr/3, j2(kr) ∼= (kr)2/15.

Substituting the above origin terms for j0 and j2 into
Eq. (15) yields the following expression for the A coefficient
for detachment from a pure p or a mixed s-p orbital:

Aε =
k2

15

∫ ∞
0 r5Rnp(r)dr∫ ∞

0 r3Rnp(r)dr
, (20)

or, since ε = k2/2 (atomic units),

A = 2

15

∫ ∞
0 r5Rnp(r)dr∫ ∞
0 r3Rnp(r)dr

. (21)

Similarly, substituting j0(kr) ∼= 1 and j1(kr) ∼= kr/3 into
Eq. (16), we obtain an explicit expression for B for detach-
ment from a mixed s-p orbital,

Bε =
(

k
3

∫ ∞
0 r4Rn′s(r)dr

)2

(∫ ∞
0 r3Rnp(r)dr

)2 (22)

or, using ε = k2/2,

B = 2

9

(∫ ∞
0 r4Rn′s(r)dr

)2

(∫ ∞
0 r3Rnp(r)dr

)2 . (23)

From Eq. (17) or, equivalently, Eqs. (21) and (23), the
B/A ratio is calculated as

B

A
=

(
k
3

∫ ∞
0 r4Rn′s(r)dr

)2

(∫ ∞
0 r3Rnp(r)dr

) (
k2

15

∫ ∞
0 r5Rnp(r)dr

)

= 5

3

(∫ ∞
0 r4Rn′s(r)dr

)2∫ ∞
0 r3Rnp(r)dr

∫ ∞
0 r5Rnp(r)dr

. (24)

Despite the explicit energy dependence of the integrals in Eqs.
(15)–(17), parameters A and B, as well as the B/A ratio, are
indeed independent of k and, therefore, ε in the slow-electron
limit, as evident from Eqs. (21), (23), and (24). These conclu-
sions are consistent with the Wigner law32 and the formula-
tions by Hanstorp et al.26

E. Photodetachment from hydrogenic s-p orbitals

If the s and p components of the detachment orbital are
assumed to be hydrogenic, with the principal quantum num-
ber n and effective nuclear charge ξ ns and ξ np, respectively,
all integrals in Eqs. (21), (23), and (24) can be evaluated
analytically using a pen and paper only. Their values for
up to n = 6 are summarized in Table S.4 in Supplement D
of the supplementary material.36 Substituting these results in
Eqs. (21), (23), and (24) gives the A and B coefficients and/or
the B/A ratio within the model approximations.

We illustrate these calculations on the 2s-2p case, which
applies to the a1 (HOMO−1) orbitals of NH2

− and CCl2−.
Using the hydrogenic 2s and 2p radial functions (Table S.3 of
the supplementary material)36

R2s(r) = 1√
2
ξ

3/2
2s (1 − ξ2sr/2) e−ξ2s r/2, (25)

R2p(r) = 1

2
√

6
ξ

5/2
2p re−ξ2pr/2, (26)

the integrals in Eqs. (21), (23), and (24) are evaluated as (Ta-
ble S.4 of the supplementary material):36

∫ ∞

0
r4R2s(r)dr = − 4! · 27

√
2ξ

7/2
2s

, (27)

∫ ∞

0
r3R2p(r)dr = 4! · 24

√
6ξ

5/2
2p

, (28)

∫ ∞

0
r5R2p(r)dr = 6! · 26

√
6ξ

9/2
2p

. (29)

Substituting Eqs. (27)–(29) into Eqs. (21) and (24) gives

A= 2

15

6! · 26

√
6ξ

9/2
2p

√
6ξ

5/2
2p

4! · 24
= 16

ξ 2
2p

Hartree−1 ≈ (0.588/ξ 2
2p)eV−1

(30)
and

B

A
= 5

3

(
− 4! · 27

√
2ξ

7/2
2s

)2 √
6ξ

5/2
2p

4! · 24

√
6ξ

9/2
2p

6! · 26

(31)
B

A
= 8

3

(
ξ2p

ξ2s

)7

.

Note the high-power dependence of B/A on ξ 2p/ξ 2s. If,
however, the 2s and 2p effective nuclear charges are assumed
equal, the result in Eq. (31) simplifies further to

B

A
= 8

3
. (32)

To reflect on the nature of the ξ 2p = ξ 2s assumption,
consider that the r5, r4, and r3 terms under the integrals in
Eqs. (21), (23), and (24) lend determining roles in the calcu-
lations of A, B, and B/A to the large-r parts of the correspond-
ing anionic wavefunctions. The effective charge in this case
should be viewed as a parameter describing the behavior of
these very diffuse tails, rather than the divergent degrees of
core penetration (commonly described with ξ 2s 	= ξ 2p). Both
the 2s and 2p tails interact with a similarly charged, nearly
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FIG. 4. The B/A ratios for different ns-np mixing cases (n = 2–6) calculated
for hydrogenic orbitals by substituting the integrals from Table S.4 in Supple-
ment D of the supplementary material36 into Eq. (24). The continuous curve
is intended as a guide. The fractions indicated next to the data points corre-
spond to ξns = ξnp, For ξns 	= ξnp, the B/A ratios are equal to the indicated
fractions multiplied by (ξnp/ξns)7.

neutral core and hence the assumption ξ 2p = ξ 2s seems rea-
sonable, to a degree.

Calculations for other ns-np mixing cases show that B/A
varies gradually with n. Using the integrals from Table S.4
(Supplement D of the supplementary material)36 in Eq. (24)
and assuming ξ ns = ξ np, we obtain B/A = 121/60 for the 3s-
3p mixing, B/A = 24/13 for 4s-4p, B/A = 135/76 for 5s-5p,
etc. These fractions are plotted as a function of n in Figure 4
and are easily generalized for mixed hydrogenic states with
ξ ns 	= ξ np. It is apparent from Figure 4 that as n increases
(e.g., for Rydberg-like dipole-bound states) B/A approaches
the asymptotic limit of 5/3.

Similar calculations can be carried out for the off-
diagonal n′s-np states with n′ 	= n. In one case, the perturba-
tion of H− by solvation was described by adding a small po-
larization component, mathematically described as a 2p type
function, to the 1s orbital of the anion.15, 19 Using Table S.4 of
the supplementary material36 and Eq. (24), we find that in the
1s-2p scenario B/A = (1/768)(ξ 2p/ξ 1s).7 The assumption ξ 1s

= ξ 2p would not be appropriate, even approximately, in this
case. In fact, ξ 1s > ξ 2p is expected, due to the very diffuse
nature of the solvation-induced polarization component.

IV. EVALUATION OF THE MODEL PARAMETERS

Given specific values of A and Z ≡ (B/A)(1 − f)/f, the
β(ε) trends in photodetachment from mixed s-p orbitals can
be modeled using Eqs. (6) or (7). This section discusses the
numerical values of these parameters, while comparison to
experimental data is presented in Sec. V.

The formalism developed in Sec. III describes molecular
anion photodetachment as a transition from an orbital that be-
longs to one “central” atom only: N in NH2

− and C in CCl2−.
Thus, the A and B coefficients are essentially atomic proper-

ties. To illuminate the implications and limitations of the re-
sults so far, we focus first on the more familiar A coefficient.

A. The A coefficients for O− and C−

In modeling the photodetachment from NH2
− and CCl2−

within the central-atom approximation, it would be natural to
first consider the detachment from the corresponding atomic
anions. Since only limited data are available for C−,42, 43 while
N− does not exist, we first undertake further model devel-
opment on the example of O−. Theoretical predictions for
this anion can be compared to the known value of A = 0.55
± 0.045 eV−1, determined through empirical fitting of the
WBCZ equation (Eq. (2)) to experimental data.26–28, 42, 44 We
will then extend the discussion to C−, while the A coeffi-
cient for the nitrogen center in NH2

− will be determined in
Sec. IV B by analyzing the results for N3

− photodetachment.

1. O− photodetachment

Equation (30) is consistent with the experimental result
for O− assuming ξ 2p ≈ 1. To put this estimate in perspec-
tive, consider that the r5 and r3 terms under the integrals in
Eq. (21) lend a determining role in calculations of A to the
diffuse long-range tails of anionic wavefunctions. The tails
interact with a nearly neutral core, asymptotically correspond-
ing to ξ 2p → 0. At the other extreme is the prediction derived
from Slater’s rules,45, 46 ξ 2p = 4.2. This estimate is also not
appropriate for our analysis, as it does not describe the dif-
fuse parts of the orbitals. The above value of ξ 2p ≈ 1 is a
compromise between the two extremes.

Additional insight into the role of diffuse functions can
be gained from Eq. (21), which allows the calculation of
A from any radial function Rnp(r). Using this equation, the
effective-charge description of the bound 2p orbital (Eq. (26))
can be replaced with a function derived from ab initio calcula-
tions. This analysis, using O− as a model system, is presented
in Supplement B of the supplementary material,36 where
we demonstrate that such calculations, employing standard
Gaussian basis sets, significantly underestimate the value of
A. The error is traced to the inadequate description of the
long-range tails of anion orbitals with Gaussian basis func-
tions and can be remedied by complementing the description
with diffuse Slater orbital functions.

2. C− photodetachment

Photodetachment of many organic anions removes elec-
trons from carbon-based orbitals. Hence, understanding C−

photodetachment is an important step in modeling these sys-
tems. The electron affinity of atomic carbon is well known
(1.262 eV),47 but only limited data exist for C− PADs. The
known data points are shown in Figure 5 and include mea-
surements for the ground-state C−(4S) (filled symbols)42, 43

and excited-state C−(2D) (open symbols).43, 48 Although in all
cases the electrons originate from 2p orbitals, the C−(4S) re-
sults are most relevant to this discussion. Modeling this lim-
ited dataset using Eq. (2) with no phase-shift (solid curve in
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FIG. 5. Experimental photoelectron anisotropy parameter values in C− pho-
todetachment vs. eKE. Filled circles: C−(4S) → C(3P) results from Refs. 42
and 43; squares: C−(2D) → C(3P) data from Refs. 48 and 43; open circle:
C−(2D) → C(1D) value from Ref. 43. Solid curve: WBCZ model prediction
(Eq. (2)) with A = 0.75 eV–1 and cos(δ2–δ0) = 1.

Figure 5) yields A ≈ 0.75 eV−1. As pointed out by Hanstorp
et al.26 and evident from Eq. (21), A reflects the spatial extent
of the anion wavefunction. Despite the scarcity of experimen-
tal data, the larger value of A for C− (0.75 eV−1), compared to
that for O− (0.55 eV−1) is consistent with the relative “sizes”
of these anions.

The above value A = 0.75 eV−1 is used for calculating all
CCl2− model curves in Figure 3(b). It can be argued that this
value should be modified to account for the greater binding
energy of the a1 orbital in CCl2− (VDE ≈ 3.2 eV for the 3B1

band in Figure 3(a)), compared to the 2p orbital of C− [eBE
= 1.262 eV for C−(4S) relative to C(3P)]. The reasoning be-
hind such an adjustment is discussed in Sec. IV B on the O2

−

example. However, the greater binding energy of the carbene,
compared to atomic carbon, can be attributed to the significant
density of this orbital on the halogen atoms and thus falls un-
der the limitations of the central-atom approximation. Hence,
we use the unmodified value of A to model the CCl2− data,
while the effect of the breakdown of the central-atom approx-
imation is discussed in Sec. V B.

B. Extension to molecular anions

1. The O2
− example

In some cases, the above formalism for calculating A or,
more generally, A� can be extended to molecular anions. We
illustrate the process by obtaining a model prediction for A2

for O2
− from the known experimental value of A = 0.55 eV−1

for O−. The model prediction is then compared to the result
of fitting the WBCZ equation (Eq. (2)) to a significant volume
of O2

− experimental data.9, 10, 49, 50 Once the self-consistency
of the model is confirmed, it may be applied to other cases.

Due to vibronic coupling, the experimental value of A2

for O2
− depends on the vibrational state of neutral O2, rang-

ing from 0.43(2) eV−1 for v = 0 to 0.31(5) eV−1 for v = 6.10

As the vibronic effects are not part of the present work,

A2 = 0.40(1) eV−1,10 corresponding to the (nearly) vertical
detachment transition to v = 2,51 is perhaps most appropriate
for model comparisons.

In the approximate central-potential description of O2
−

photodetachment, the initial state of the detached electron is
described by � = 2, while the final state is a superposition of
the �f = 1 and �f = 3 waves.9, 10, 49, 50 Following the procedure
similar to that outlined in Sec. III, the A2 coefficient is defined
by the following ratio (Eq. (18) with � = 2):

A2ε = χ2,3

χ2,1
=

∫ ∞
0 j3(kr)r3Rd (r)dr∫ ∞
0 j1(kr)r3Rd (r)dr

. (33)

In this equation, Rd(r) is the radial function of the d-like
bound state, with r defined relative to the molecule’s sym-
metry center.

Using the origin behavior of the spherical Bessel func-
tions (Eq. (19)) and recalling that ε = k2/2, the explicit ex-
pression for A2 that follows from Eq. (33) is shown to be

A2 = 2

35

∫ ∞
0 r6Rd (r)dr∫ ∞
0 r4Rd (r)dr

. (34)

This result is distinct from Eq. (21), as it describes photode-
tachment from a d rather than p orbital. Due to the r6 and r4

terms under the integrals in Eq. (34), the A2 coefficient is even
more sensitive to the long-range scaling of the bound orbital
than the A (≡ A1) coefficient in p state detachment.

Since the d-like HOMO of O2
− is a linear combination of

2p orbitals and the dominant contribution to A2 via Eq. (34) is
from the long-range part of the wavefunction, we will assume
that the long-range radial dependence of the 2pπg

∗ HOMO of
O2

− is determined approximately by the O 2p functions, i.e.,

Rd(r) ≈ R2p(r) = 1
2
√

6
ξ

5/2
O−

2
re

−ξ
O

−
2

r/2
(per Eq. (26)). Making this

substitution in Eq. (34) yields

A2 = 2

35

∫ ∞
0 r7e

−ξ
O

−
2

r/2
dr∫ ∞

0 r5e
−ξ

O
−
2

r/2
dr

= 336

35

1

ξ 2
O−

2

Hartree−1 ≈ (0.353/ξ 2
O−

2
)eV−1. (35)

Parameter ξO−
2

defines the spatial extent of the bound
2pπg

∗ orbital in O2
−. We will assume, initially, that ξO−

2
in

Eq. (35) equals ξ 2p in Eq. (30), as applied to O− photodetach-
ment. We will also adopt the notation ξ 2p(O−) ≡ ξO− . The
physical implication of ξO−

2
= ξO− is that the long-range scal-

ing of the parent detachment orbital does not change markedly
as a result of O−(2P) + O(3P) → O2

−(2�g) association. With
this assumption, comparing Eqs. (30) and (35), the model
predicts

A2=3

5
A. (36)

Using the experimental value of A(O−) = 0.55 eV−1, we then
calculate A2(O2

−) = 0.33 eV− 1. Considering the crudeness
of the above approximations, this prediction is in remark-
able agreement with the experimentally determined range of
A2(O2

−) = 0.31(5)–0.43(2) eV−1.10
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Without assuming ξO−
2

= ξO− , the combination of
Eqs. (30) and (35) yields

A2 = 3

5

(
ξO−

ξO−
2

)2

A. (37)

As the binding energy of the 2pπg
∗ electron in O2

− (0.83 eV
for vertical detachment to v = 2)51 is smaller than that in O−

(1.46 eV), the O2
− wavefunction is expected to be more dif-

fuse, described effectively by ξO−
2

< ξO− . This hypothesis is
confirmed by Hartree-Fock calculations using the doubly aug-
mented basis d-aug-cc-pVQZ (chosen for its two sets of dif-
fuse functions52, 53), as outlined in Supplement B of the sup-
plementary material.36 Although the Gaussian-basis descrip-
tion of the long-range scaling of wavefunctions has obvious
limitations, the analysis suggests that the long-range tails of
the individual p components of the β-spin 2pπg

∗ orbital of
O2

− and 2p orbital of O− are described approximately by
ξO−

2
= 1.437 and ξO− = 1.511, respectively (see Supplement

B of the supplementary material).36 Substituting these values
in Eq. (37) and still using the experimental value of A(O−)
= 0.55 eV−1, we get A2(O2

−) = 0.36 eV−1, only slightly dif-
ferent from 0.33 eV−1 (obtained with ξO−

2
= ξO−). Both val-

ues are well within the experimental range of A2 = 0.31(5)–
0.43(2) eV−1.10

2. NH2
− and N3

−

We shall now use the reverse of the approach presented
above (Eqs. (36) and (37)) in order to evaluate A for the a1

−1

photodetachment channel in NH2
− from the A2 coefficient de-

termined from experimental data for N3
−. We begin by pre-

senting the experimental results for the azide anion.21 The
anisotropy data in this case can be modeled in terms of de-
tachment from a d-like anion HOMO, similar to O2

−.
The experimental procedures are described in the Ap-

pendix and Ref. 21. The photoelectron images, spectra, and
PADs for N3

− photodetachment are shown in Figure 6.21 The
spectra contain a single narrow band at eBE ≈ 2.66 eV, corre-
sponding to the N3(2�g) ← N3

−(2�g) transition. The lack
of an observable vibrational progression reflects the simi-
lar geometries of the anion and neutral ground states, con-
sistent with previous studies.54, 55 The experimentally deter-
mined anisotropy parameters are plotted vs. eKE in Figure 7.

The N3
− HOMO is illustrated in the inset in Figure 7.

While this 2pπg
∗ orbital extends over the linear three-atom

framework (with a node at the central nitrogen), its structure
is similar to an atomic dxy orbital on the central nitrogen. Fit-
ting the β(ε) data in Figure 7 with an � = 2 WBCZ curve,
yields A2(N3

−) = 0.22 eV−1. The smaller magnitude of this
coefficient, relative to the A2 = 0.31(5)–0.43(2) eV−1 range
for O2

−,10 is indicative of the smaller spatial extent of the
azide orbital. Although the triatomic azide anion is geomet-
rically larger than O2

−, its greater detachment energy (VDE
= 2.66 eV for N3

− vs. 0.83 eV for O2
−) corresponds to a less

diffuse wavefunction and, therefore, smaller A2.
Since the binding energy corresponding to the N3

−

HOMO (2.66 eV) is similar to that for the a1 (HOMO-1) in
NH2

− (≈ 2.8 eV, per Figure 2(a)), we expect the spatial ex-

FIG. 6. Photoelectron imaging results for N3
− at 266, 355, and 391 nm:

raw photoelectron images (left; arbitrary intensity and velocity scaling), pho-
toelectron energy spectra (middle), and photoelectron angular distributions
(right). Double arrow in the top left corner indicates the laser polarization
direction (vertical in the plane of all images). Vertical arrows in the spec-
tra indicate the respective photon energies. θ is photoelectron velocity angle
relative to the laser polarization direction. The minimum values of all three
photoelectron angular distribution axes is zero. The corresponding anisotropy
parameters are plotted versus eKE in Figure 7.

tents of the two orbitals to be similar as well. Hence, we use
Eq. (36) to calculate the expected value of A for the a1

−1 de-
tachment transition in NH2

− from the A2 = 0.22 eV−1 deter-
mined above for N3

−. This yields A(NH2
−) = 0.37 eV−1.

This value of A applies only to the a1
−1 NH2

− detach-
ment transition, i.e., NH2

−(X 1A1) → NH2(A 2A1). The A
value determined by fitting the b1

−1 data, i.e., NH2
−(X 1A1)

→ NH2(X 2B1), is significantly larger: A = 1.09 eV−1.19 The
difference is again accounted for by the drastically differ-
ent binding energies of the a1 and b1 orbitals, 2.8 eV and
0.8 eV, respectively (see Figure 2(a)). The smaller binding

FIG. 7. Symbols: photoelectron anisotropy parameters for the N3(2�g)
← N3

−(2�g) photodetachment transition, determined from the data in
Figure 6. The error bars are less than ±0.1 in all cases. Dashed curve: the
WBCZ (Eq. (2)) fit to the data with � = 2, A2 = 0.22, and cos(δ2−δ0)
= 0.95. Inset shows the πg HOMO of N3

− computed at the B3LYP/aug-
cc-pVTZ level.
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energy corresponds to a more diffuse b1 orbital, translating
into larger A.

C. Fractional p character of mixed orbitals
in the central-atom approximation

We consider photodetachment from molecular orbitals
localized largely on a single “central” atom. Parameter f in
Eqs. (3), (6), and (7) describes the fractional p character of
specific detachment orbitals, rather than the overall bonding
character of the atom (related to bond angles). Despite the
nominal similarities between the a1 (HOMO-1) orbitals of
CCl2− and NH2

− (see Figure 1), their fractional p charac-
ters are quite different. The experimental PADs for the corre-
sponding detachment channel in CCl2− (Figure 3(b)) suggest
a predominantly s character of the orbital, while the data for
NH2

− (Figure 2(b)) indicate a predominantly p initial state.
Ab initio calculations support these conclusions. In this

section, we quantify the fractional p characters of the CCl2−

and NH2
− orbitals of in the central-atom approximation, i.e.,

by analyzing the molecular-orbital coefficients for the s- and
p-type functions of only the C and N atoms, respectively. That
is, the a1 (HOMO-1) orbitals are represented as superposi-
tions of the 2s and 2p orbitals of C in CCl2− or N in NH2

−,
while the contributions of the Cl and H orbitals are ignored.
For NH2

−, we also perform an additional analysis by directly
fitting a linear combination of hydrogenic 2s and 2p functions
to the molecular orbital.

These analyses are carried out for Hartree-Fock MOs,
neglecting electron correlation and relaxation effects. This
approach is deemed sufficient within the framework of the
approximate s-p mixing model. For more in-depth calcula-
tions, the use of correlated wavefunctions may be more ap-
propriate. To this end, Oana and Krylov have demonstrated
the use of Dyson orbitals in calculations of photoelectron
angular distributions.13, 14 Dyson orbitals, employed to de-
scribe photodetachment in many-electron systems, can be
used in our analysis without any changes to the formalism pre-
sented in Sec. III, only at a cost of some added computational
complexity.

We determined the fractional p character of the β-spin
a1 (HOMO-1) computed17 for geometry-optimized CCl2− by
numerically integrating the radial distributions of the s and p
C-atom components of the orbital (with the aug-cc-pVQZ ba-
sis set). The HF output yielded f = 0.26, while similar cal-
culations at the MP2 level resulted in f = 0.27. The latter
value will be used for CCl2− in the following analysis. The
fractional p character of the a1 (HOMO-1) of NH2

−, deter-
mined in the above manner with the aug-cc-pVQZ basis set, is
f = 0.61 at the MP2, 0.60 at the Hartree-Fock, and 0.60 at
the B3LYP level. Consistent with CCl2−, the MP2 value of
f = 0.61 will be used in the following analysis.

Figures 8 and 9 show (a) the computed Hartree-Fock
(HOMO-1) orbitals of NH2

− and CCl2−, respectively, along-
side (b) the corresponding central-atom approximations, ob-
tained using Eq. (3) with hydrogenic 2s and 2p functions and
the f coefficient determined above. Clearly, the agreement be-
tween (a) and (b) is poor for both NH2

− and CCl2−. In the
latter case, the central-atom approximation fails significantly,

FIG. 8. (a) The a1 (HOMO-1) orbital of NH2
−, computed at the HF/aug-cc-

pVDZ level of theory (isosurface value of 0.10). (b) The s-p mixing model
function defined by Eq. (3) with f = 0.61 from the uncorrected central-atom
ab initio prediction. The corresponding β(ε) curve is shown in Figure 2(b)
in red. (c) The least-squares fit of the model orbital defined by Eq. (3) to the
computed orbital shown in (a), corresponding to f = 0.96. The corresponding
β(ε) curve is shown in Figure 2(b) in bold black. Top and bottom in each case
correspond to the same orbitals/functions viewed from two different angles.

as it cannot account for the Cl atom contributions to the MO.
This problem is discussed in more detail in Sec. V B. In the
case of NH2

−, the ab initio orbital can in fact be adequately
described as a superposition of single-center s and p func-
tions. However, there is a significant quantitative discrepancy
between the apparent p character of the MO in Figure 8(a)
(f ≈ 1) and the f value of 0.61 (Figure 8(b)) determined based
on the N atom orbitals. This is because the s type functions of
the H atom in NH2

− add significantly to the overall p charac-
ter of the MO.

To account approximately for the H atom contributions,
we performed a least-squares fit of the model function defined
by Eq. (3) to the computed (HOMO-1) of NH2

− shown in
Figure 8(a). (This is a purely ab initio procedure, reducing
the computed wave function to a much smaller s-p mixing
basis set; it does not involve a model fit to experimental
data.) We procedure yields a “molecular” f value of 0.96,

FIG. 9. (a) The a1 (HOMO-1) orbital of CCl2−, computed at the HF/aug-cc-
pVDZ level of theory (isosurface value of 0.04). (b) The s-p mixing model
function defined by Eq. (3) with f = 0.27 (the uncorrected ab initio central-
atom prediction). The corresponding β(ε) curve is shown in Figure 3(b) in
red.
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corresponding to
√

1 − f = 0.20 for the s coefficient in
Eq. (3). The corresponding s-p model function is plotted in
Figure 8(c), reflecting a much improved agreement with the
ab initio MO, compared to the orbital in Figure 8(b).

Similar analysis for the CCl2− HOMO-1 (depicted in
Figure 9(a)) is not meaningful, because the contributions of
Cl p functions to the MO cannot be accounted for, even ap-
proximately, within the central-atom s-p mixing model.

V. COMPARISON TO EXPERIMENT

A. Application of the s-p mixing model to NH2
−

and CCl2−

We now compare the model predictions using the pa-
rameter values determined in Sec. IV, to the experimental
data for NH2

− and CCl2− introduced in Sec. II. The model
predictions (not fits to the data) for the a1

−1 photodetach-
ment channels in these anions are shown by solid curves in
Figures 2(b) and 3(b), respectively. All NH2

− calcula-
tions assume A = 0.37 eV−1, while the CCl2− curves use
A = 0.75 eV−1. Justification for these values is given in
Secs. IVA and IV B.

Several model curves are included in each of
Figures 2(b) and 3(b). First, the WBCZ model predic-
tions for pure p state photodetachment are shown for
reference (green), calculated using Eq. (6) with f = 1 or,
equivalently, Eq. (2) with � = 1. In addition, Figure 3(b)
includes a horizontal β = 2 line (also green) for the pure s
state limit (Eq. (6) with f = 0 or, equivalently, Eq. (2) with
� = 0).

Next, two mixed s-p curves are shown in each case. For
NH2

−, the red curve in Figure 2(b) was calculated assuming
the unmodified parameters B/A = 8/3 (Eq. (32)) and f = 0.61,
i.e., Z = (B/A)(1 − f)/f = 1.7. The f = 0.61 value corresponds
to the central-atom approximation accounting for N contribu-
tions only (Sec. IV C). The bold black curve in Figure 2(b)
corresponds to f = 0.96 (Z = 0.11), which corrects for the H
atoms contributions to the MO, as also discussed in Sec. IV C.
Although this last simulation is still rooted in the central-atom
formalism, the above simple correction yields a much better
quantitative agreement with the experiment.

For the a1 (HOMO-1) of CCl2−, the central-atom ap-
proximation is not justified (Sec. IV C). However, assuming
that the photodetachment occurs predominantly from the car-
bene center in the anion, the s-p mixing model can provide
an approximate description of the experimental observations
in terms of adjustable parameter Z. The red curve in Figure
3(b) assumes the unmodified ab initio parameters values: B/A
= 8/3 (Eq. (32)) and f = 0.27 (Sec. IV C), i.e., Z = (B/A)(1 −
f)/f = 7.2. Despite the quantitative discrepancies, this simula-
tion (not fit to the data) does capture the qualitative trend in
the data.

The black curve in Figure 3(b) is calculated assuming a Z
value adjusted for best agreement of the model with the exper-
iment. The curve is shown as dashed, because it represents the
only simulation in this work that involves a fit to experimental
data, in addition to ab initio modeling. The dashed curve cor-
responds to Z = 27, which can be obtained, for example, with
B/A = 8/3 (Eq. (32)) and f = 0.09. Thus, the experimental re-

sults (fit with the dashed black curve) fall closer to the pure
s state limit (larger Z) than the unmodified model prediction
(red solid curve). The direction of this deviation reflects cer-
tain qualitative features of the electronic structure of CCl2−,
discussed in Sec. V B.

B. Breakdown of the central-atom approximation

Some discrepancies between the approximate model and
the experiment are to be expected. Yet, in the case of NH2

−

the black curve in Figure 2(b), calculated entirely based on ab
initio values, provides a nearly quantitative agreement with
the experiment. The remaining divergence may likely be ac-
counted for by the neglected phase shifts. In the CCl2− case,
the quantitative divergence of the model from the experiment
is attributed to the breakdown of the central-atom approxima-
tion. Although quantitative modeling outside of this approx-
imation is beyond the scope of this work, we present argu-
ments that explain the direction of the observed discrepancy.

With a given value of A, the anisotropy trends described
by Eq. (7) are uniquely determined by Z ≡ (B/A)(1 − f)/f.
As f by itself is not a meaningful parameter for CCl2−, be-
cause of the breakdown of the central-atom approximation,
we use Z to describe the model curves in Figure 3(b). While
ab initio (central-atom) modeling yields Z = 7.2 (red curve in
Figure 3(b)), the experimental data suggest Z ≈ 27 (dashed
black curve). The difference can be understood in two ways.
(i) If the B/A ratio is kept fixed at the unmodified model value
of 8/3, the larger experimental Z value reflects a smaller frac-
tional p character of the parent orbital: f ≈ 0.09, compared
to the central-atom estimate of f = 0.27. (ii) If, on the other
hand, f = 0.27 is kept unchanged, the experimental value of Z
corresponds to B/A ≈ 10, a marked increase from the model
prediction of B/A = 8/3.

The above parameter adjustments may be explained by
the properties of the parent orbital, shown in Figure 9(a). The
analysis of the dominant s and p contributions of all atoms,
not just C, indicates that the Cl s function contributions to
the MO are small, but contributions from the Cl p functions
are non-negligible. The respective p contributions of Cl and
C are opposite in sign and the resulting interference can be
accounted for, approximately, by adjusting either the (i) f or
(ii) B/A model parameters, which results in an overall increase
in Z.

(i) The destructive overlap of the C and Cl p functions in
the short range effectively reduces the p character of the
orbital. Assuming unmodified B/A = 8/3, these consid-
erations are consistent with the increased value of Z that
best describes the data in Figure 3(b).

(ii) The destructive interference of the C and Cl p functions
in the long range can be accounted for, approximately,
within the central-atom approximation by increasing
ξ 2p relative to ξ 2s and turning to Eq. (31), which reflects
the variation of B/A with respect to ξ 2s and ξ 2p. As there
is no significant s contribution from the Cl atoms to the
MO of interest, the s part of the orbital remains well rep-
resented by the central-atom approximation and there
is no reason to modify ξ 2s. Thus, we expect ξ 2p/ξ 2s >

1, suggesting that B/A � 8/3 (the “much greater than”
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sign is due to the 7th power in Eq. (31)), which is con-
sistent with the B/A ≈ 10 value that the experimen-
tal data in Figure 3(b) suggest (assuming unmodified
f = 0.27).

Thus, considering the basic features of the electronic structure
indicates how adjustments to the parameters can help over-
come the breakdown of the central-atom approximation.

C. Polarization-induced n′s-np mixing (n′ �= n)

Finally, we comment on the n′s-np (n′ 	= n) mixing that
may be used to describe a variety of solvated anion sys-
tems. This approach was adopted in our previous work on
H−(NH3)n and NH2

−(NH3)n cluster anions.15, 19 We revisit
this type of initial states on the example of H−(NH3)n in or-
der to illuminate one pertinent aspect of anion solvation in the
light of the present work.

In Sec. III E, we showed that for the 1s-2p mixing sce-
nario, applicable to solvated H−, B/A = (1/768)(ξ 2p/ ξ 1s),7

with ξ 1s > ξ 2p mandated by the very diffuse nature of the
solvation-induced polarization component. Calculating the
appropriate values of ξ 1s and ξ 2p is beyond the scope of the
present work, but because of the high power dependence on
ξ 2p/ξ 1s, a B/A ratio < 10−3 can easily be expected. The orig-
inal analysis of H−(NH3)n anisotropies yielded a reasonable
agreement with the experiment using f ≈ 0.03 and arbitrar-
ily assuming B = A (i.e., B/A = 1), as the properties of the
B/A ratio had not been known at the time.15 Since it is Z
≡ (B/A)(1 − f)/f, rather than B/A and f separately, that de-
termines the anisotropy trends (Eq. (7)), the above values of f
and B/A should be interpreted in terms of the single parameter
Z ≈ 30. If B/A < 10−3, then with no substantive changes in
the original analysis,15 we deduce that a polarization-induced
fractional p character f < 3 × 10−5 is indicated by the exper-
imental results for solvated H−.

VI. SUMMARY

We have presented an approximate model for photo-
electron angular distributions in anion photodetachment from
mixed s-p states. Considering the resulting dipole-allowed s,
p, and d free-electron partial waves allows us to make pre-
dictions for the photoelectron anisotropy in terms of the frac-
tional p character of the detachment orbital and the A and B
coefficients describing the relative intensities of the p → d to
p → s and s → p to p → s channels, respectively.

The primary objective of the model is to provide concep-
tual insight into the physics of photodetachment from hybrid
or mixed molecular orbitals, without embarking on comput-
erized calculations. It was developed assuming the following
approximations: (i) The only contributions to the parent or-
bital that were considered are those from the s and p compo-
nents of the central atom. The breakdown of this approxima-
tion was also discussed. (ii) Analytical solutions of the model
have been obtained within the low-eKE approximation, the
same approximation that allows rewriting the Cooper-Zare
equation (Eq. (1)) in the WBCZ form (Eq. (2)). (iii) Fur-
ther analytical solutions have been obtained assuming that the

long-range tails of anionic wavefunctions can be described in
terms of hydrogenic wavefunctions, with the effective nuclear
charge parameter used to control the spatial extent of the tails.

For the case of hydrogenic orbitals, it has been shown that
the B/A ratio in photodetachment from a mixed 2s-2p state
equals 8/3 (assuming the same spatial extents of the s and
p tails). Corresponding fractions have also been derived for
other ns-np mixing cases.

The predictions of the model were tested using several
model anion systems, including NH2

− and CCl2−. The agree-
ment with the experiment is quite compelling for NH2

−, while
the quantitative discrepancies in the CCl2− case are attributed
to the breakdown of the central-atom approximation. A mech-
anism for corresponding corrections has been indicated.
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APPENDIX: EXPERIMENTAL DETAILS

The experiments were performed using the pulsed
negative-ion photoelectron imaging spectrometers described
in detail elsewhere.4, 16, 56 In each case, a neutral precursor
gas is expanded through a pulsed supersonic nozzle (Gen-
eral Valve, Inc., series 9) operated at a 50 Hz repetition rate
into a vacuum chamber (∼10−6 Torr base pressure, ∼10−5

Torr under load), where it is bombarded with a crossed
or counter-propagating continuous beam of 1 keV electrons
from an electron gun. Negative ions57 from the resulting
plasma are extracted into a Wiley-McLaren58 time-of-flight
mass-spectrometer by a pulsed repeller plate downstream of
the nozzle.59 The resulting mass-spectra are recorded using
a dual microchannel plate detector positioned at the end of a
∼2 m long flight tube.

Photoelectron images are obtained by intersecting a lin-
early polarized laser pulse with the ion packet of interest about
15 cm upstream of the ion detector, within a velocity-map60

imaging61 assembly (∼10−8 Torr operating pressure). Pho-
todetachment is performed using the harmonics of a nanosec-
ond pulsed Nd:YAG laser operating at a repetition rate of 50
kHz (Quanta Ray Lab 130-50 by Spectra Physics, Inc.) or the
fundamental or the second or third harmonics of an amplified
femtosecond Ti:Sapphire laser (Spectra Physics, Inc.).

The photoelectron images are collected over 104–105 ex-
perimental cycles each. The photodetached electrons are ac-
celerated by a series of electrodes onto a 40 mm diame-
ter microchannel plate detector, coupled to a P43 phosphor
screen (Burle, Inc.). The resulting images are recorded by
a charge-coupled device camera. Typically, 104–105 experi-
mental cycles are accumulated for each reported image. The
photodetachment transitions for bare H− (Ref. 62) and O−



054311-13 Sanov et al. J. Chem. Phys. 138, 054311 (2013)

(Ref. 63 and 64) are used for energy calibration. The com-
plete three-dimensional photoelectron distributions are recon-
structed using the inverse Abel transform,65 as implemented
in the BASEX program.66

The CCl2− anions were synthesized via a gas-phase
ion-molecule reaction within the supersonic expansion of
dichloromethane seeded in N2O carrier gas at a backing pres-
sure of ∼30 psi.20, 67, 68 High-energy electron collisions pro-
duced slow secondary electrons, which formed O− by disso-
ciative electron attachment to N2O, followed by the desired
H2

+ abstraction reaction of O− with CH2Cl2, giving CCl2−.
For NH2

− generation, a neutral precursor of neat am-
monia or 30% ammonia seeded in argon was used. The
resulting mass-spectra contained two series of peaks, cor-
responding to the H−(NH3)n and NH2

−(NH3)n cluster-ion
series, exclusively.19

Azide ions, N3
−, were generated by dissociative elec-

tron attachment to benzyl azide,54, 69 which was prepared as
follows based upon a common synthesis,70 as described in
Ref. 21. (Though no problems were encountered during this
synthesis, some azides are known to be explosive. A care-
ful analysis of safety hazards should be performed before at-
tempting to recreate this synthesis. Details in Ref. 21) Ben-
zyl azide was seeded in argon by passing the argon carrier
gas with a stagnation pressure of ∼25 psig through a stainless
steel sample holder containing ∼100 mg of benzyl azide ap-
proximately 6 in. upstream of the nozzle. Azide formation is
expected to occur via dissociative secondary electron attach-
ment to benzyl azide.54, 69 Azide was identified in the time-
of-flight mass-spectrum and photodetached with the second
harmonic from a Ti:Sapphire laser (391 nm) and the third
(355 nm) and fourth (266 nm) harmonics of a Nd:YAG laser.
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